Publications by authors named "Aino Komatsu"

Marchantia polymorpha reproduces vegetatively (asexually) by producing propagules known as gemmae within gemma cups and sexually through spores. We previously reported that KARRIKIN INSENSITIVE2 (KAI2)-dependent signaling promotes gemma cup and gemma formation. KAI2A perceives unidentified endogenous ligand(s), tentatively referred to as KAI2 ligands (KL).

View Article and Find Full Text PDF

Chloroplasts accumulate on the cell surface under weak light conditions to efficiently capture light but avoid strong light to minimize photodamage. The blue light receptor phototropin regulates the chloroplast movement in various plant species. In Arabidopsis thaliana, phototropin mediates the light-induced chloroplast movement and positioning via specialized actin filaments on the chloroplasts, chloroplast-actin filaments.

View Article and Find Full Text PDF
Article Synopsis
  • - Marchantia polymorpha, a model plant for bryophytes, demonstrates how RNA silencing helps early land plants cope with high temperatures, through the unique ARGONAUTE1 ortholog gene (MpAGO1) regulated by specific microRNAs (miR11707.1 and miR11707.2).
  • - Analysis revealed that MpAGO1 is less selective for various small RNA species compared to its counterpart in Arabidopsis (AtAGO1), indicating complexities in microRNA species specificity that require further investigation.
  • - The study showed that while MpAGO1 mRNA decreases with temperature changes, the stability of MpAGO1 protein and its miRNAs boosts the activity of the RNA-induced silencing complex (RISC
View Article and Find Full Text PDF

Characterizing phenotypes is a fundamental aspect of biological sciences, although it can be challenging due to various factors. For instance, the liverwort Marchantia polymorpha is a model system for plant biology and exhibits morphological variability, making it difficult to identify and quantify distinct phenotypic features using objective measures. To address this issue, we utilized a deep-learning-based image classifier that can handle plant images directly without manual extraction of phenotypic features and analyzed pictures of M.

View Article and Find Full Text PDF

Karrikins are smoke-derived butenolides that induce seed germination and photomorphogenesis in a wide range of plants. KARRIKIN INSENSITIVE2 (KAI2), a paralog of a strigolactone receptor, perceives karrikins or their metabolized products in Arabidopsis thaliana. Furthermore, KAI2 is thought to perceive an unidentified plant hormone, called KAI2 ligand (KL).

View Article and Find Full Text PDF

In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood.

View Article and Find Full Text PDF

In flowering plants, strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), an SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating its origin in the common ancestor of land plants.

View Article and Find Full Text PDF

KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination.

View Article and Find Full Text PDF

Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/β-hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant-derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity.

View Article and Find Full Text PDF

The liverwort species, Marchantia polymorpha, shows environment-dependent morphological plasticity throughout its life cycle. Thalli, representing the predominant body form throughout most of this bryophyte's life cycle, grow with repeated dichotomous branching at the apex and develop horizontally under sufficient light intensity. Spores, after germination, produce a mass of cells, called sporelings, which then grow into thalli.

View Article and Find Full Text PDF

In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening.

View Article and Find Full Text PDF

Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements.

View Article and Find Full Text PDF

Background: Plant latex is the cytoplasm of highly specialized cells known as laticifers, and is thought to have a critical role in defense against herbivorous insects. Proteins abundantly accumulated in latex might therefore be involved in the defense system.

Results: We purified latex abundant protein a and b (LA-a and LA-b) from mulberry (Morus sp.

View Article and Find Full Text PDF