Publications by authors named "Michael W Linhoff"

Mud/NuMA/LIN-5 (in flies, vertebrates, and worms) is an evolutionarily conserved protein that regulates the shape and orientation of the mitotic spindle. In vertebrate cells, these functions depend on a C-terminal region called the NuMA-Tip, which: 1) mediates interaction with the conserved partner protein LGN (called Pins in flies), 2) contains a highly conserved subsequence called the NLM, and 3) binds directly to microtubule ends. Although Mud plays a vital role in Drosophila mitosis, less is known about its structure, particularly at the C-terminus.

View Article and Find Full Text PDF

The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes.

View Article and Find Full Text PDF

Here we present a comprehensive map of the accessible chromatin landscape of the mouse hippocampus at single-cell resolution. Substantial advances of this work include the optimization of a single-cell combinatorial indexing assay for transposase accessible chromatin (sci-ATAC-seq); a software suite, , for the rapid processing and visualization of single-cell combinatorial indexing data sets; and a valuable resource of hippocampal regulatory networks at single-cell resolution. We used sci-ATAC-seq to produce 2346 high-quality single-cell chromatin accessibility maps with a mean unique read count per cell of 29,201 from both fresh and frozen hippocampi, observing little difference in accessibility patterns between the preparations.

View Article and Find Full Text PDF

Coordinated development of excitatory and inhibitory synapses is essential for higher brain function, and impairment in this development is associated with neuropsychiatric disorders. In contrast to the large body of accumulated evidence regarding excitatory synapse development, little is known about synaptic adhesion and organization mechanisms underlying inhibitory synapse development. Through unbiased expression screens and proteomics, we identified immunoglobulin superfamily member 21 (IgSF21) as a neurexin2α-interacting membrane protein that selectively induces inhibitory presynaptic differentiation.

View Article and Find Full Text PDF

We present ChromATin, a quantitative high-resolution imaging approach for investigating chromatin organization in complex tissues. This method combines analysis of epigenetic modifications by immunostaining, localization of specific DNA sequences by FISH, and high-resolution segregation of nuclear compartments using array tomography (AT) imaging. We then apply this approach to examine how the genome is organized in the mammalian brain using female Rett syndrome mice, which are a mosaic of normal and Mecp2-null cells.

View Article and Find Full Text PDF

Asynchronous transmission plays a prominent role at certain synapses but lacks the mechanistic insights of its synchronous counterpart. The current view posits that triggering of asynchronous release during repetitive stimulation involves expansion of the same calcium domains underlying synchronous transmission. In this study, live imaging and paired patch clamp recording at the zebrafish neuromuscular synapse reveal contributions by spatially distinct calcium sources.

View Article and Find Full Text PDF

Perturbations of cell surface synapse-organizing proteins, particularly α-neurexins, contribute to neurodevelopmental and psychiatric disorders. From an unbiased screen, we identify calsyntenin-3 (alcadein-β) as a synapse-organizing protein unique in binding and recruiting α-neurexins, but not β-neurexins. Calsyntenin-3 is present in many pyramidal neurons throughout cortex and hippocampus but is most highly expressed in interneurons.

View Article and Find Full Text PDF

A long-held tenet of neuromuscular transmission is that calcium-dependent neurotransmitter release is mediated by N-type calcium channels in frog but P/Q-type channels in mammals. The N-type assignment in frog is based principally on pharmacological sensitivity to ω-conotoxin GVIA. Our studies show that zebrafish neuromuscular transmission is also sensitive to ω-conotoxin GVIA.

View Article and Find Full Text PDF

An obligatory role for the calcium sensor synaptotagmins in stimulus-coupled release of neurotransmitter is well established, but a role for synaptotagmin isoform involvement in asynchronous release remains conjecture. We show, at the zebrafish neuromuscular synapse, that two separate synaptotagmins underlie these processes. Specifically, knockdown of synaptotagmin 2 (syt2) reduces synchronous release, whereas knockdown of synaptotagmin 7 (syt7) reduces the asynchronous component of release.

View Article and Find Full Text PDF

Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries.

View Article and Find Full Text PDF

Central neurons develop and maintain molecularly distinct synaptic specializations for excitatory and inhibitory transmitters, often only microns apart on their dendritic arbor. Progress towards understanding the molecular basis of synaptogenesis has come from several recent studies using a coculture system of non-neuronal cells expressing molecules that generate presynaptic or postsynaptic "hemi-synapses" on contacting neurons. Together with molecular properties of these protein families, such studies have yielded interesting clues to how glutamatergic and GABAergic synapses are assembled.

View Article and Find Full Text PDF

Formation of synaptic connections requires alignment of neurotransmitter receptors on postsynaptic dendrites opposite matching transmitter release sites on presynaptic axons. beta-neurexins and neuroligins form a trans-synaptic link at glutamate synapses. We show here that neurexin alone is sufficient to induce glutamate postsynaptic differentiation in contacting dendrites.

View Article and Find Full Text PDF

Despite the potential of the inhibitor of apoptosis proteins (IAPs) to block cytochrome c-dependent caspase activation, the critical function of IAPs in regulating mammalian apoptosis remains unclear. We report that the ability of endogenous IAPs to effectively regulate caspase activation depends on the differentiation state of the cell. Despite being expressed at equivalent levels, endogenous IAPs afforded no protection against cytochrome c-induced apoptosis in naive pheochromocytoma (PC12) cells, but were remarkably effective in doing so in neuronally differentiated cells.

View Article and Find Full Text PDF

Target-derived cues promote local differentiation of axons into nerve terminals at sites of synaptic contact. Using clustering of synaptic vesicles in cultured neurons as an assay, we purified putative target-derived presynaptic organizing molecules from mouse brain and identified FGF22 as a major active species. FGF7 and FGF10, the closest relatives of FGF22, share this activity; other FGFs have distinct effects.

View Article and Find Full Text PDF

CIITA is the primary factor activating the expression of the class II MHC genes necessary for the exogenous pathway of Ag processing and presentation. Strict control of CIITA is necessary to regulate MHC class II gene expression and induction of an immune response. We show in this study that the nuclear localized form of CIITA is a predominantly phosphorylated form of the protein, whereas cytoplasmic CIITA is predominantly unphosphorylated.

View Article and Find Full Text PDF

An efficient system for producing human cytochrome c variants is important to help us understand the roles of this protein in biological processes relevant to human diseases including apoptosis and oxidative stress. Here, we describe an Escherichia coli expression system for producing recombinant human cytochrome c. We also characterize the structure, stability, and function of the protein and show its utility for studying apoptosis.

View Article and Find Full Text PDF

Mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene have been recently linked to three chronic autoinflammatory disorders. These observations point to an important role for CIAS1 in regulating inflammatory processes. We report that TNF-alpha and ligands recognized by multiple Toll-like receptors rapidly induce CIAS1 gene expression in primary human monocytes.

View Article and Find Full Text PDF

Proteins containing a limited number of N-terminal motifs followed by nucleotide-binding domain and leucine-rich repeat regions are emerging as important regulators for immunity. A search of human genome scaffold databases has identified a large family of known and unknown genes, which we have recently called the CATERPILLER (caspase recruitment domain, transcription enhancer, r(purine)-binding, pyrin, lots of leucine repeats) gene family. This work describes the characterization of a new member, Monarch-1.

View Article and Find Full Text PDF

Large mammalian proteins containing a nucleotide-binding domain (NBD) and C-terminal leucine-rich repeats (LRR) similar in structure to plant disease resistance proteins have been suggested as critical in innate immunity. Our interest in CIITA, a NBD/LRR protein, and recent reports linking mutations in two other NBD/LRR proteins to inflammatory disorders have prompted us to perform a search for other members. Twenty-two known and novel NBD/LRR genes are spread across eight human chromosomes, with multigene clusters occurring on 11, 16, and 19.

View Article and Find Full Text PDF

Activation of class II major histocompatibility complex (MHC) gene expression is regulated by a master regulator, class II transcriptional activator (CIITA). Transactivation by CIITA requires its nuclear import. This study will address a mechanistic role for the leucine-rich repeats (LRR) of CIITA in regulating nuclear translocation by mutating 12 individual consensus-motif "leucine" residues in both its alpha-motifs and beta-motifs.

View Article and Find Full Text PDF