Publications by authors named "Michael Rode"

Ultrasonography in medicine allows real-time assessment of the structure where the procedure occurs. This design feature could be more advantageous than radiological "snapshot "view imaging. Technically, the image resolution of endosonographic ultrasound is noticeably higher than that of transesophageal echocardiography and is recommended for use in the current guidelines regarding gastrointestinal tumor management, as it provides images of the highest possible resolution during local staging.

View Article and Find Full Text PDF

The Iberian Peninsula is a water-scarce region that is increasingly reliant on groundwater. Climate change is expected to exacerbate this situation due to projected irregular precipitation patterns and frequent droughts. Here, we utilised convolutional neural networks (CNNs) to assess the direct effect of climate change on groundwater levels, using monthly meteorological data and historical groundwater levels from 3829 wells.

View Article and Find Full Text PDF

Primary cardiac tumors are a rare disease, with 20% of the cases being malignant. Among them, angiosarcoma is characterized by a short clinical course and poor prognosis, even after surgery, chemotherapy, and radiation therapy. We present a 67-year-old woman diagnosed with a primary malignant tumor (angiosarcoma) infiltrating the right atrial myocardium.

View Article and Find Full Text PDF

Drought is becoming increasingly prevalent globally, stimulating research into its effects on river ecosystems. However, our understanding of how droughts affect riverine CO dynamics on a daily scale remains limited, particularly considering the likelihood of future drought occurrence. Here, we seize the opportunity to compare daily CO cycles between a non-drought summer and an unprecedented drought summer.

View Article and Find Full Text PDF

High-frequency nitrate-N (NO-N) data are increasingly available, while accurate assessments of in-stream NO-N retention in large streams and rivers require a better capture of complex river hydrodynamic conditions. This study demonstrates a fusion framework between high-frequency water quality data and hydrological transport models, that (1) captures river hydraulics and their impacts on solute signal propagation through river hydrodynamic modeling, and (2) infers in-stream retention as the differences between conservatively traced and reactively observed NO-N signals. Using this framework, continuous 15-min estimates of NO-N retention were derived in a 6th-order reach of the lower Bode River (27.

View Article and Find Full Text PDF

The EU Water Framework Directive (WFD) has emphasized that altered stream/river morphology and diffuse pollution are the two major pressures faced by European water bodies at catchment scales. Increasing efforts have been directed toward restoration to meet WFD standards for ecological health, but this work has achieved limited success. One challenge is that little is known about how morphological changes (i.

View Article and Find Full Text PDF

Aims: Endosonography (EUS) is the diagnostic tool with the highest resolution for the local staging of gastrointestinal tumours and, due to the detailed visualization of the wall layers, is recommended in current guidelines for cancer management. In addition, an endoscope has an ultrasound tip design and balloon insufflation control design, and a 120° bending mechanism to deflect the endoscope tip. These advantages could be beneficial and valuable while investigating the cardiovascular structures during routine gastrointestinal procedures using this diagnostic tool.

View Article and Find Full Text PDF

Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso‑ and eutrophic), both of which drain into the largest drinking water reservoir in Germany.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how commonly used medications impact blood gene expression, revealing incomplete understanding of their mechanisms of action and side effects.
  • By analyzing data from large cohorts, researchers identified fourteen drugs linked to changes in the expression of 534 genes, with further validation performed in patients with heart conditions.
  • The resulting catalogue can aid in drug repurposing and help identify potential off-target effects of these medications.
View Article and Find Full Text PDF

On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are exposed to complex transport and transformation processes. However, detailed process knowledge as revealed by Lagrangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge.

View Article and Find Full Text PDF

Background: The pathophysiology of arterial stiffness is not completely understood. Pulse wave velocity (PWV) is an established marker for arterial stiffness. We compare genetics of three PWV modes, namely carotid-femoral PWV (cfPWV), brachial-ankle (baPWV) and brachial-femoral (bfPWV), reflecting different vascular segments to analyse association with genetic variants, heritability and genetic correlation with other biological traits.

View Article and Find Full Text PDF

Excessive nutrient loadings into rivers are a well-known ecological problem. Implemented mitigation measures should ideally be cost-effective, but perfectly ranking alternative nutrient mitigation measures according to cost-effectiveness is a difficult methodological challenge. Furthermore, a particularly practical challenge is that cost-effective measures are not necessarily favoured by local stakeholders, and this may impede their successful implementation in practice.

View Article and Find Full Text PDF

Adequate tools for evaluating sustainable intensification (SI) of crop production for agro-hydrological system are not readily available. Building on existing concepts, we propose a framework for evaluating SI at the field and river basin levels. The framework serves as a means to assess and visualise SI indicator values, including yield, water-use efficiency and nitrogen-use efficiency (NUE), alongside water and nitrogen surpluses and their effects on water quantity and quality.

View Article and Find Full Text PDF

Excessive dissolved inorganic nitrogen (DIN) added to urban river systems by point-source (PS) inputs, including raw sewage and wastewater treatment plant (WWTP) effluent, constitutes a water-quality problem of growing concern worldwide. However, the quantification of their impacts on DIN retention capacity and pathways in receiving water still remains partial. In this study, a spatially intensive water quality monitoring campaign was conducted to support the application of a water quality model to a PS-impacted urban river in Hefei City, China.

View Article and Find Full Text PDF

High-frequency sensor measurements enable calculation of continuous autotrophic nitrate uptake rate based on its intrinsic relationship with gross primary production (GPP). The spatiotemporally available data offer prospects to advance process understandings across scales. We used continuous 15-min data (2011-2015) from a forest upstream reach and an agricultural downstream reach of the Selke River, Germany.

View Article and Find Full Text PDF
Article Synopsis
  • This study analyzes how land use and land cover (LULC) changes, alongside climate change, affect hydrology and soil erosion in the Dano catchment in Burkina Faso, utilizing historical and future modeling based on land use data from 1990 to 2030.
  • By simulating scenarios with constant climate and changing LULC, the research finds increases in water yield (3.6%-46.5%) and sediment yield (-3.3%-52.6%).
  • The results indicate that while climate change has a significant effect on hydrology and sediment yield, changes in LULC can strongly amplify these impacts, leading to a combined increase in water yield (20.3%-73.4%) and sediment
View Article and Find Full Text PDF

Low-frequency grab sampling cannot capture fine dynamics of stream solute concentrations, which results in large uncertainties in load estimates. The recent development of high-frequency sensors has enabled monitoring solute concentrations at sub-hourly time scales. This study aimed to improve nitrate (NO) load estimates using high-resolution records (15-min time interval) from optical sensors to capture the typical concentration response to storm events.

View Article and Find Full Text PDF

The contamination of riverine sediments and suspended matter with hydrophobic pollutants is typically associated with urban land use. However, it is rarely related to the sediment supply of the watershed, because sediment yield data are often missing. We show for a suite of watersheds in two regions of Germany with contrasting land use and geology that the contamination of suspended particles with polycyclic aromatic hydrocarbons (PAH) can be explained by the ratio of inhabitants residing within the watershed and the watershed's sediment yield.

View Article and Find Full Text PDF

New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation.

View Article and Find Full Text PDF

Nitrate loads and corresponding dual-isotope signatures were used to evaluate large scale N dynamics and trends in a river catchment with a strong anthropogenic gradient (forest conservation areas in mountain regions, and intensive agriculturally used lowlands). The Bode River catchment with an area of 3200 km(2) in the Harz Mountains and central German lowlands was investigated by a two years monitoring program including 133 water sampling points each representing a subcatchment. Based on discharge data either observed or simulated by the mesoscale hydrological model (mHM) a load based interpretation of hydrochemical and isotope data was conducted.

View Article and Find Full Text PDF

Despite extensive efforts to reduce nitrate transfer in agricultural areas, limited response is often observed in the nitrate concentration in rivers. To investigate the reasons for this limited response, nitrate dynamics in a 100km(2) agricultural catchment in eastern Germany was analysed from sub-hourly to decadal time-scales. Sub-hourly analysis of storm event dynamics during a typical hydrological year (2005-2006) was performed to identify periods of the year with high leaching risk and to link the latter to agricultural management practices in the catchment.

View Article and Find Full Text PDF

Recently developed in situ NO3– sensors provide new opportunities to measure changes in stream concentration at high temporal frequencies that historically have not been feasible. In this study, we used multiparameter sensor measurements to relate assimilatory NO3– uptake to metabolic rates and calculate continuous uptake rates for two stream reaches and a whole stream network. Two years of continuous 15 min data from a forest and agricultural reach of the Selke river (456 km2) revealed a strong correlation between assimilatory NO3– uptake and growth primary production (GPP) for the forest (r2 = 0.

View Article and Find Full Text PDF

Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 μm) sediment in the 15 000 km(2) Kharaa River basin in northern Mongolia.

View Article and Find Full Text PDF

The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations.

View Article and Find Full Text PDF

In river catchments, N transformation and storage processes during lateral transport are important in controlling N loads of surface waters. There is a lack of approaches which capture lateral flows and associated N transformation in a spatially distributed way. The aim of this paper is to develop a new conceptual N transport and transformation model which simulates the lateral nitrate transport in subsurface flow from the source area to the receiving water body.

View Article and Find Full Text PDF