There is an unmet need for breath-based markers for pulmonary vascular disease (PVD). We developed a fully-automatic algorithm to analyze expiratory COflow from resting ventilation and evaluated the clinical associations of our readouts. We enrolled patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), pulmonary arterial hypertension (PAH) and healthy controls and evaluated fractionated volumes for dead space, mixed space (MSV) and alveolar space, their respective COvolumes and ventilatory equivalents for CO(EqCO) and the maximum slope of the first derivative of the cumulative expiratory COvolume over expired volume (MSV-slope) as primary readouts.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
February 2025
To evaluate dual-layer dual-energy computed tomography (dlDECT)-based characterization of thrombus composition for differentiation of acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH). This retrospective single center cohort study included 49 patients with acute PE and 33 patients with CTEPH who underwent CT pulmonary angiography on a dlDECT from 06/2016 to 06/2022. Conventional images), material specific images (virtual non-contrast [VNC], iodine density overlay [IDO], electron density [ED]), and virtual monoenergetic images (VMI) were analyzed.
View Article and Find Full Text PDFObjectives: To evaluate dual-layer dual-energy computed tomography (dlDECT)-derived pulmonary perfusion maps for differentiation between acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH).
Methods: This retrospective study included 131 patients (57 patients with acute PE, 52 CTEPH, 22 controls), who underwent CT pulmonary angiography on a dlDECT. Normal and malperfused areas of lung parenchyma were semiautomatically contoured using iodine density overlay (IDO) maps.
J Heart Lung Transplant
January 2024
Background: While computed tomography pulmonary angiography (CTPA) is an integral part of the work-up in patients with suspected pulmonary hypertension (PH), there is no established CTPA-derived prognostic marker. We aimed to assess whether quantitative readouts of lung vessel morphology correlate with established prognostic indicators in PH.
Methods: We applied a fully-automatic in-house developed algorithm for segmentation of arteries and veins to determine lung vessel morphology in patients with precapillary PH who underwent right heart catheterization and CTPA between May 2016 and May 2019.
Rheumatology (Oxford)
February 2023
Objectives: It has recently become possible to assess lung vascular and parenchymal changes quantitatively in thoracic CT images using automated software tools. We investigated the vessel parameters of patients with SSc, quantified by CT imaging, and correlated them with interstitial lung disease (ILD) features.
Methods: SSc patients undergoing standard of care pulmonary function testing and CT evaluation were retrospectively evaluated.
Background And Objective: This study aimed to investigate whether quantitative lung vessel morphology determined by a new fully automated algorithm is associated with functional indices in idiopathic pulmonary fibrosis (IPF).
Methods: A total of 152 IPF patients had vessel volume, density, tortuosity and heterogeneity quantified from computed tomography (CT) images by a fully automated algorithm. Separate quantitation of vessel metrics in pulmonary arteries and veins was performed in 106 patients.
Knowledge of the lung vessel morphology in healthy subjects is necessary to improve our understanding about the functional network of the lung and to recognize pathologic deviations beyond the normal inter-subject variation. Established values of normal lung morphology have been derived from necropsy material of only very few subjects. In order to determine morphologic readouts from a large number of healthy subjects, computed tomography pulmonary angiography (CTPA) datasets, negative for pulmonary embolism, and other thoracic pathologies, were analyzed using a fully-automatic, in-house developed artery/vein separation algorithm.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is a heterogeneous disease in which the amount of emphysema and airway disease may be very different between individuals, even in end-stage disease. Emphysema formation may be linked to the involvement of the small pulmonary vessels. The NAPDH oxidase (Nox) family is emerging as a key disease-related factor in vascular diseases, but currently its role in hypoxia-induced pulmonary remodelling in COPD remains unclear.
View Article and Find Full Text PDFMed Image Anal
December 2016
Automated computer-aided analysis of lung vessels has shown to yield promising results for non-invasive diagnosis of lung diseases. To detect vascular changes which affect pulmonary arteries and veins differently, both compartments need to be identified. We present a novel, fully automatic method that separates arteries and veins in thoracic computed tomography images, by combining local as well as global properties of pulmonary vessels.
View Article and Find Full Text PDFThe VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation.
View Article and Find Full Text PDFAm J Respir Crit Care Med
August 2014
The accuracy of pulmonary vascular pressure measurements is of great diagnostic and prognostic relevance. However, there is variability of zero leveling procedures, and the current recommendation of end-expiratory reading may not always be adequate. A review of physiological and anatomical data, supported by recent imaging, leads to the practical recommendation of zero leveling at the cross-section of three transthoracic planes, which are, respectively midchest frontal, transverse through the fourth intercostal space, and midsagittal.
View Article and Find Full Text PDFUnlabelled: Pulmonary hypertension (PH) can result in vascular pruning and increased tortuosity of the blood vessels. In this study we examined whether automatic extraction of lung vessels from contrast-enhanced thoracic computed tomography (CT) scans and calculation of tortuosity as well as 3D fractal dimension of the segmented lung vessels results in measures associated with PH. In this pilot study, 24 patients (18 with and 6 without PH) were examined with thorax CT following their diagnostic or follow-up right-sided heart catheterisation (RHC).
View Article and Find Full Text PDFObjectives: In this pilot study we explored whether contrast-material bolus propagation time and speed in the pulmonary arteries (PAs) determined by dynamic contrast-enhanced computed tomography (DCE-CT) can distinguish between patients with and without pulmonary hypertension (PH).
Methods: Twenty-three patients (18 with and 5 without PH) were examined with a DCE-CT sequence following their diagnostic or follow-up right-sided heart catheterisation (RHC). X-ray attenuation over time curves were recorded for regions of interest in the main, right and left PA and fitted with a spline fit.
Int J Cardiovasc Imaging
December 2013
Cardiac output (CO) is an important diagnostic and prognostic factor in the haemodynamic evaluation of patients. The gold standard for CO measurement, thermodilution, requires an invasive right-heart catheterisation (RHC). In this pilot study we aimed to determine the accuracy of non-invasive CO determination from dynamic contrast-enhanced computed tomography (CT) compared to thermodilution.
View Article and Find Full Text PDF