Controlling the layer-by-layer chemistry and structure of nanomaterials remains a crucial focus in nanoscience and nanoengineering. Specifically, the integration of atomically thin semiconductors with antiferromagnetic two-dimensional materials holds great promise for advancing research. In this work, we successfully demonstrate a new synthesis approach for high-crystallinity CrCl/MoS van der Waals heterostructures a thermodynamically optimized chemical vapor transport (CVT) process on -sapphire (0001) substrates.
View Article and Find Full Text PDFA ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized.
View Article and Find Full Text PDFZinc oxide/Curcumin (Zn(CUR)O) nanocomposites were prepared hydrothermal treatment of Zn(NO) in the presence of hexamethylenetetramine as a stabilizing agent and CUR as a bioactive element. Three ZnO : CUR ratios were investigated, namely 57 : 43 (Zn(CUR)O-A), 60 : 40 (Zn(CUR)O-B) and 81 : 19 (Zn(CUR)O-C), as assessed by thermogravimetric analyses, with an average hydrodynamic diameter of nanoaggregates in the range of 223 to 361 nm. The interaction of CUR with ZnO hydroxyl and ketoenol groups (as proved by X-ray photoelectron spectroscopy analyses) was found to significantly modify the key properties of ZnO nanoparticles with the obtainment of a bilobed shape (as shown by scanning electron microscopy), and influenced the growth process of the composite nanoparticles as indicated by the varying particle sizes determined by powder X-ray diffraction.
View Article and Find Full Text PDFIn addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity.
View Article and Find Full Text PDFWith the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures.
View Article and Find Full Text PDFCarbon nanotube yarns (CNY) are a novel carbonaceous material and have received a great deal of interest since the beginning of the 21st century. CNY are of particular interest due to their useful heat conducting, electrical conducting, and mechanical properties. The electrical conductivity of carbon nanotube yarns can also be influenced by functionalization and annealing.
View Article and Find Full Text PDFThe study of the aggregation of soluble proteins into highly ordered, insoluble amyloid fibrils is fundamental for the understanding of neurodegenerative disorders. Here, we present a method for the observation of single amyloid fibrils that allows the investigation of fibril growth, secondary nucleation or fibril breakup that is typically hidden in the average ensemble. Our approach of thermophoretic trapping and rotational diffusion measurements is demonstrated for single Aβ, Aβ and pyroglutamyl-modified amyloid-β variant (pGlu-Aβ) amyloid fibrils.
View Article and Find Full Text PDFWastewater treatment plants are the main release sources of pharmaceutical compounds present in surface waters. Even at low concentrations, many of these substances have long-term adverse effects on the environment. For an efficient control of pharmaceutical removal, a real-time recognition is a prerequisite.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Dynamic methods of biosensing based on electrical actuation of surface-tethered nanolevers require the use of levers whose movement in ionic liquids is well controllable and stable. In particular, mechanical integrity of the nanolevers in a wide range of ionic strengths will enable to meet the chemical conditions of a large variety of applications where the specific binding of biomolecular analytes is analyzed. Herein, we study the electrically induced switching behavior of different rodlike DNA origami nanolevers and compare to the actuation of simply double-stranded DNA nanolevers.
View Article and Find Full Text PDFIn the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with FeNi alloy nanoparticles (x = 0.33, 0.5).
View Article and Find Full Text PDFIn the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties.
View Article and Find Full Text PDFDevelopment of electrically powered DNA origami nanomachines requires effective means to actuate moving origami parts by externally applied electric fields. We demonstrate how origami nanolevers on an electrode can be manipulated (switched) at high frequency by alternating voltages. Orientation switching is long-time stable and can be induced by applying low voltages of 200 mV.
View Article and Find Full Text PDFA novel approach for the integration of π-conjugated polymers (CPs) into DNA-based nanostructures is presented. Using the controlled Kumada catalyst-transfer polycondensation, well-defined thiophene-based polymers with controllable molecular weight, specific end groups, and water-soluble oligoethylene glycol-based side chains were synthesized. The end groups were used for the easy but highly efficient click chemistry-based attachment of end-functionalized oligodeoxynucleotides (ODNs) with predesigned sequences.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2016
DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis.
View Article and Find Full Text PDFCurrently, DNA nanotechnology offers the most programmable, scalable, and accurate route for the self-assembly of matter with nanometer precision into 1, 2, or 3D structures. One example is DNA origami that is well suited to serve as a molecularly defined "breadboard", and thus, to organize various nanomaterials such as nanoparticles into hybrid systems. Since the controlled assembly of quantum dots (QDs) is of high interest in the field of photonics and other optoelectronic applications, a more detailed view on the functionalization of QDs with oligonucleotides shall be achieved.
View Article and Find Full Text PDFWe report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations.
View Article and Find Full Text PDFWe demonstrate a single molecule trapping concept that modulates the actual driving force of Brownian motion--the temperature. By spatially and temporally varying the temperature at a plasmonic nanostructure, thermodiffusive drifts are induced that are used to trap single nano-objects. A feedback controlled switching of local temperature fields allows us to confine the motion of a single DNA molecule for minutes and tailoring complex effective trapping potentials.
View Article and Find Full Text PDFThe mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo.
View Article and Find Full Text PDFPurpose: Preparation of Nanographene oxide (NGO) - Gelatin hybrids for efficient treatment of Neuroblastoma.
Methods: Nanohybrids were prepared via non-covalent interactions. Spectroscopic tools have been used to discriminate the chemical states of NGO prior and after gelatin coating, with UV visible spectroscopy revealing the maximum binding capacity of gelatin to NGO.
Biomed Tech (Berl)
February 2015
Home monitoring is a promising technology to deal with the increasing amount of chronically ill patients while ensuring quality of medical care. Most systems available today depend on a high degree of interaction between the user and the device. Especially for people relying on advanced levels of care, this scheme is impracticable.
View Article and Find Full Text PDFBackground: The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA) is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences) offers the possibility of controlling both interstrand and intrastrand properties.
View Article and Find Full Text PDFThe synthesis of DNA nanotubes is an important area in nanobiotechnology. Different methods to assemble DNA nanotubes have been reported, and control over the width of the nanotubes has been achieved by programmed subunits of DNA tiles. Here we report the self-assembly of DNA nanotubes with controllable diameters.
View Article and Find Full Text PDFBased on experimental studies on tube formation during self-assembly of bacterial surface (S)-layers, a mechanistic model for describing the underlying basic mechanisms is proposed and the effect of process parameters on growth velocity and tube radius is investigated. The S-layer is modeled as a curved sheet with discrete binding sites for the association of monomers distributed along the S-layer edges. Reported changes of the tube radius owing to genetic protein modifications are explained within the framework of continuum mechanics.
View Article and Find Full Text PDFJ Phys Chem B
March 2011
Strong chemical interaction between bacterial surface protein layers and calcium atoms deposited in situ on top was revealed by means of photoemission spectroscopy. The interaction appears to mainly happen at the oxygen site of the peptide bonds and involves a large charge transfer from Ca 4s states into the peptide backbone. Chemical kinetics of this reaction was characterized using time-dependent valence band photoemission, and the reaction rate constant was determined.
View Article and Find Full Text PDFNanotechnology
January 2011
λ-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng µl(-1)) at pH 8.
View Article and Find Full Text PDF