Publications by authors named "Michael D Leonard"

Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies.

View Article and Find Full Text PDF

What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested.

View Article and Find Full Text PDF

The known prenylated benzoic acid derivative 3-geranyl-4-hydroxy-5-(3″,3″-dimethylallyl)benzoic acid (1) and two new chromane natural products were isolated from the methanolic extract of the leaves of Piper kelleyi Tepe (Piperaceae), a midcanopy tropical shrub that grows in lower montane rain forests in Ecuador and Peru. Structure determination using 1D and 2D NMR analysis led to the structure of the chromene 2 and to the reassignment of the structure of cumanensic acid as 4, an isomeric chromene previously isolated from Piper gaudichaudianum. The structure and relative configuration of new chromane 3 was determined using 1D and 2D NMR spectroscopic analysis and was found to be racemic by ECD spectropolarimetry.

View Article and Find Full Text PDF

Purpose: To examine whether normalized quadriceps and hamstring strength would predict quadriceps and hamstring muscle activation amplitudes and whether these neuromuscular factors would predict knee kinematics and kinetics during a drop jump task.

Methods: Thirty-nine females and 39 males were measured for isometric quadriceps and hamstring strength and were instrumented to obtain surface electromyography, kinematic, and kinetic measures during the initial landing of a drop jump. Multiple linear regressions first examined the relationship between thigh strength and activation then examined whether these neuromuscular variables were predictive of hip and knee flexion excursions, knee extensor moments (KEM), and anterior knee shear forces during the deceleration phase of the drop jump.

View Article and Find Full Text PDF