Publications by authors named "Michael C Pride"

Objective: People who sustain joint injuries such as anterior cruciate ligament (ACL) rupture often develop post-traumatic osteoarthritis (PTOA). In human patients, ACL injuries are often treated with ACL reconstruction. However, it is still unclear how effective joint restabilization is for reducing the progression of PTOA.

View Article and Find Full Text PDF

Epidemiological studies consistently implicate traffic-related air pollution (TRAP) and/or proximity to heavily trafficked roads as risk factors for developmental delays and neurodevelopmental disorders (NDDs); however, there are limited preclinical data demonstrating a causal relationship. To test the effects of TRAP, pregnant rat dams were transported to a vivarium adjacent to a major freeway tunnel system in northern California where they were exposed to TRAP drawn directly from the face of the tunnel or filtered air (FA). Offspring remained housed under the exposure condition into which they were born and were tested in a variety of behavioral assays between postnatal day 4 and 50.

View Article and Find Full Text PDF

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay.

View Article and Find Full Text PDF

Mutations in the X-linked gene MECP2 cause the majority of Rett syndrome (RTT) cases. Two differentially spliced isoforms of exons 1 and 2 (MeCP2-e1 and MeCP2-e2) contribute to the diverse functions of MeCP2, but only mutations in exon 1, not exon 2, are observed in RTT. We previously described an isoform-specific MeCP2-e1-deficient male mouse model of a human RTT mutation that lacks MeCP2-e1 while preserving expression of MeCP2-e2.

View Article and Find Full Text PDF

Immune dysregulation has been noted consistently in individuals with autism spectrum disorder (ASD) and their families, including the presence of autoantibodies reactive to fetal brain proteins in nearly a quarter of mothers of children with ASD versus <1% in mothers of typically developing children. Our lab recently identified the peptide epitope sequences on seven antigenic proteins targeted by these maternal autoantibodies. Through immunization with these peptide epitopes, we have successfully created an endogenous, antigen-driven mouse model that ensures a constant exposure to the salient autoantibodies throughout gestation in C57BL/6J mice.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease caused by a loss of paternal genes on chromosome 15q11-q13. It is characterized by cognitive impairments, developmental delay, sleep abnormalities, and hyperphagia often leading to obesity. Clinical research has shown that a lack of expression of SNORD116, a paternally expressed imprinted gene cluster that encodes multiple copies of a small nucleolar RNA (snoRNA) in both humans and mice, is most likely responsible for many PWS symptoms seen in humans.

View Article and Find Full Text PDF

Altering AMPA receptor (AMPAR) content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1) encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1) modifies AMPAR gating properties in a subunit-dependent manner.

View Article and Find Full Text PDF

Unlabelled: Mutations in the SHANK3 gene have been discovered in autism spectrum disorder (ASD), and the intellectual disability, Phelan-McDermid Syndrome. This study leveraged a new rat model of Shank3 deficiency to assess complex behavioral phenomena, unique to rats, which display a richer social behavior repertoire than mice. Uniquely detectable emissions of ultrasonic vocalizations (USV) in rats serve as situation-dependent affective signals and accomplish important communicative functions.

View Article and Find Full Text PDF

Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features.

View Article and Find Full Text PDF

The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 mice overlap pathology reported in humans with CHD8 mutations.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models.

View Article and Find Full Text PDF

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) that occur sporadically in 1:10,000 female births. RTT is characterized by a period of largely normal development followed by regression in language and motor skills at 6-18 months of age. Mecp2 mutant mice recapitulate many of the clinical features of RTT, but the majority of behavioral assessments have been conducted in male Mecp2 hemizygous null mice as offspring of heterozygous dams.

View Article and Find Full Text PDF

The effects of kappa opioid receptors (KOR) on motivated behavior are well established based on studies in male rodents, but relatively little is known about the effects of KOR in females. We examined the effects of KOR activation on conditioned place aversion and social interaction in the California mouse (Peromyscus californicus). Important differences were observed in long-term (place aversion) and short-term (social interaction) effects.

View Article and Find Full Text PDF

Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g.

View Article and Find Full Text PDF