Licorice saponins, the main constituents of Glycyrrhiza glabra L. roots, are highly appreciated by the consumer for their pleasant sweet and long lasting licorice taste. The objective of the present study was to understand the molecular features that contribute to bitter, sweet and licorice sensation of licorice roots, and whether individual compounds elicit more than one of these sensations.
View Article and Find Full Text PDFThe increasing demand for healthier food products, with reduced levels of table salt, sugar, and mono sodium glutamate, reinforce the need for novel taste enhancers prepared by means of food-grade kitchen-type chemistry. Although several taste modulating compounds have been discovered in processed foods, their Maillard-type ex food production is usually not exploited by industrial process reactions as the yields of target compounds typically do not exceed 1-2%. Natural deep eutectic solvents (NADES) are reported for the first time to significantly increase the yields of the taste enhancers 1-deoxy-ᴅ-fructosyl-N-β-alanyl-ʟ-histidine (49% yield), N-(1-methyl-4-oxoimidazolidin-2-ylidene) aminopropionic acid (54% yield) and N²-(1-carboxyethyl) guanosine 5'-monophosphate (22% yield) at low temperature (80-100 °C) within a maximum reaction time of 2 h.
View Article and Find Full Text PDFJ Agric Food Chem
January 2018
Targeted quantification of 49 basic taste-active molecules, followed by the calculation of dose-over-threshold (DoT) factors, and taste re-engineering experiments revealed minerals, nucleotides/nucleosides, amino acids, organic acids, and carbohydrates as the key compounds of Pot-au-Feu, a traditional broth preparation from beef cuts and vegetables. Moreover, the dipeptide carnosine was identified to be the key inducer for the white-meaty and thick-sour orosensation of the broth, next to anserine and 1-deoxy-d-fructosyl-N-β-alanyl-l-histidine, the latter of which has been identified for the first time by means of a sensory-guided fractionation. Sensory studies revealed the threshold concentration of carnosine in model broth to decrease by a factor of 5 upon nonenzymatic glycosylation to reach 4.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
December 2017
In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers.
View Article and Find Full Text PDF