Plant Biotechnol J
August 2024
Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait.
View Article and Find Full Text PDFP4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers.
View Article and Find Full Text PDFHalophytes tolerate high salinity levels that would kill conventional crops. Understanding salt tolerance mechanisms will provide clues for breeding salt-tolerant plants. Many halophytes, such as quinoa (Chenopodium quinoa), are covered by a layer of epidermal bladder cells (EBCs) that are thought to mediate salt tolerance by serving as salt dumps.
View Article and Find Full Text PDFCrops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance.
View Article and Find Full Text PDF