Publications by authors named "Max Coulter"

Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of the latest developments. Two-row spring barley cultivars are intensely studied as they are the source of high-quality grain for malting and distilling. Here we provide data from a European two-row spring barley population containing 209 different genotypes registered for the UK market between 1830 to 2014.

View Article and Find Full Text PDF

Background: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis.

View Article and Find Full Text PDF

A prerequisite to exploiting soil microbes for sustainable crop production is the identification of the plant genes shaping microbiota composition in the rhizosphere, the interface between roots and soil. Here, we use metagenomics information as an external quantitative phenotype to map the host genetic determinants of the rhizosphere microbiota in wild and domesticated genotypes of barley, the fourth most cultivated cereal globally. We identify a small number of loci with a major effect on the composition of rhizosphere communities.

View Article and Find Full Text PDF

Accurate characterisation of splice junctions (SJs) as well as transcription start and end sites in reference transcriptomes allows precise quantification of transcripts from RNA-seq data, and enables detailed investigations of transcriptional and post-transcriptional regulation. Using novel computational methods and a combination of PacBio Iso-seq and Illumina short-read sequences from 20 diverse tissues and conditions, we generated a comprehensive and highly resolved barley reference transcript dataset from the European 2-row spring barley cultivar Barke (BaRTv2.18).

View Article and Find Full Text PDF

It is increasingly apparent that although different genotypes within a species share "core" genes, they also contain variable numbers of "specific" genes and different structures of "core" genes that are only present in a subset of individuals. Using a common reference genome may thus lead to a loss of genotype-specific information in the assembled Reference Transcript Dataset (RTD) and the generation of erroneous, incomplete or misleading transcriptomics analysis results. In this study, we assembled genotype-specific RTD (sRTD) and common reference-based RTD (cRTD) from RNA-seq data of cultivated Barke and Morex barley, respectively.

View Article and Find Full Text PDF

Diagnostic markers for Rrs1 have been identified by testing for associations between SNPs within the Rrs1 interval in 150 barley genotypes and their resistance to Rhynchosporium commune isolates recognised by lines containing Rrs1. Rhynchosporium or barley scald, caused by the destructive fungal pathogen Rhynchosporium commune, is one of the most economically important diseases of barley in the world. Barley landraces from Syria and Jordan demonstrated high resistance to rhynchosporium in the field.

View Article and Find Full Text PDF

Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R.

View Article and Find Full Text PDF

Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari.

View Article and Find Full Text PDF