Leading theories suggest that hippocampal replay drives offline learning through coupling with an internal teaching signal such as ventral striatal dopamine (DA); however, the relationship between hippocampal replay and dopamine is unknown. Simultaneous recording of putative hippocampal replay events (dorsal CA1 sharp-wave ripples, SWRs) and fiber photometry of ventral striatal DA in mice revealed a significant increase in DA following SWRs, peaking ∼0.3 s after SWRs.
View Article and Find Full Text PDFMazes are a fundamental and widespread tool in behavior and systems neuroscience research in rodents, especially in spatial navigation and spatial memory investigations in behaving animals. However, their form and inflexibility often restrict potential experimental paradigms that involve multiple or adaptive maze designs. Unique layouts often lead to elevated costs, whether financially or in terms of time investment from scientists.
View Article and Find Full Text PDFThe striatum is thought to switch flexibly between multiple converging inputs to support adaptive behavior. The "communication through coherence" (CTC) hypothesis is a potential mechanism to implement such a flexible switching. For CTC to work in the striatum, striatal excitability must show rhythmic fluctuations, such as those related to the phase of the striatal local field potential (LFP).
View Article and Find Full Text PDFHippocampal replay is widely thought to support two key cognitive functions: online decision-making and offline memory consolidation. In this review, we take a closer look at the hypothesized link between awake replay and online decision-making in rodents, and find only marginal evidence in support of this role. By contrast, the consolidation view is bolstered by new computational ideas and recent data, suggesting that (i) replay performs offline fictive learning for later goal-oriented behavior; and (ii) replay tags memories prior to sleep, prioritizing them for consolidation.
View Article and Find Full Text PDFExperience replay is a powerful mechanism to learn efficiently from limited experience. Despite several decades of compelling experimental results, the factors that determine which experiences are selected for replay remain unclear. A particular challenge for current theories is that on tasks that feature unbalanced experience, rats paradoxically replay the less-experienced trajectory.
View Article and Find Full Text PDFThe hippocampus is thought to enable the encoding and retrieval of ongoing experience, the organization of that experience into structured representations like contexts, maps, and schemas, and the use of these structures to plan for the future. A central goal is to understand what the core computations supporting these functions are, and how these computations are realized in the collective action of single neurons. A potential access point into this issue is provided by 'splitter cells', hippocampal neurons that fire differentially on the overlapping segment of trajectories that differ in their past and/or future.
View Article and Find Full Text PDFNeural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities linked to reward and effort. However, the NAc also contributes to flexible behavior in ways that are difficult to explain based on value signals alone, raising the question of if and how nonvalue signals are encoded in NAc. We recorded NAc neural ensembles while head-fixed mice performed an odor-based biconditional discrimination task where an initial discrete cue modulated the behavioral significance of a subsequently presented reward-predictive cue.
View Article and Find Full Text PDFThe rodent hippocampus constructs statistically independent representations across environments ("global remapping") and assigns individual neuron firing fields to locations within an environment in an apparently random fashion, processes thought to contribute to the role of the hippocampus in episodic memory. This random mapping implies that it should be challenging to predict hippocampal encoding of a given experience in one subject based on the encoding of that same experience in another subject. Contrary to this prediction, we find that by constructing a common representational space across rats in which neural activity is aligned using geometric operations (rotation, reflection, and translation; "hyperalignment"), we can predict data of "right" trials (R) on a T-maze in a target rat based on (1) the "left" trials (L) of the target rat and (2) the relationship between L and R trials from a different source rat.
View Article and Find Full Text PDFAnimal behavior is highly structured. Yet, structured behavioral patterns-or "statistical ethograms"-are not immediately apparent from the full spatiotemporal data that behavioral scientists usually collect. Here, we introduce a framework to quantitatively characterize rodent behavior during spatial (e.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2020
Patterns of neural activity that occur spontaneously during sharp-wave ripple (SWR) events in the hippocampus are thought to play an important role in memory formation, consolidation and retrieval. Typical studies examining the content of SWRs seek to determine whether the identity and/or temporal order of cell firing is different from chance. Such 'first-order' analyses are focused on a single time point and template (map), and have been used to show, for instance, the existence of preplay.
View Article and Find Full Text PDFDespite clear evidence linking the basal ganglia to the control of outcome insensitivity (i.e., habit) and behavioral vigor (i.
View Article and Find Full Text PDFNat Neurosci
September 2019
The rodent hippocampus spontaneously generates bursts of neural activity (replay) that can depict spatial trajectories to reward locations, suggesting a role in model-based behavioral control. A largely separate literature emphasizes reward revaluation as the litmus test for such control, yet the content of hippocampal replay under revaluation conditions is unknown. We examined the content of awake replay events following motivational shifts between hunger and thirst.
View Article and Find Full Text PDFLocal field potentials (LFPs) recorded from the human and rodent ventral striatum (vStr) exhibit prominent, behaviorally relevant gamma-band oscillations. These oscillations are related to local spiking activity and transiently synchronize with anatomically related areas, suggesting a possible role in organizing vStr activity. However, the origin of vStr gamma is unknown.
View Article and Find Full Text PDFInformation processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors.
View Article and Find Full Text PDFThe rat limbic system contains head direction (HD) cells that fire according to heading in the horizontal plane, and these cells are thought to provide animals with an internal compass. Previous work has found that HD cell tuning correlates with behavior on navigational tasks, but a direct, causal link between HD cells and navigation has not been demonstrated. Here, we show that pathway-specific optogenetic inhibition of the nucleus prepositus caused HD cells to become directionally unstable under dark conditions without affecting the animals' locomotion.
View Article and Find Full Text PDFThe decoding of a sensory or motor variable from neural activity benefits from a known ground truth against which decoding performance can be compared. In contrast, the decoding of covert, cognitive neural activity, such as occurs in memory recall or planning, typically cannot be compared to a known ground truth. As a result, it is unclear how decoders of such internally generated activity should be configured in practice.
View Article and Find Full Text PDFThe loop structure of cortico-striatal anatomy in principle enables both descending (cortico-striatal) and ascending (striato-cortical) influences, but the factors that regulate the flow of information in these loops are not known. We report that low- and high-gamma oscillations (∼50 and ∼80 Hz, respectively) in the local field potential of freely moving rats are highly synchronous between the infralimbic region of the medial prefrontal cortex (mPFC) and the ventral striatum (vStr). Strikingly, high-gamma oscillations in mPFC preceded those in vStr, whereas low-gamma oscillations in mPFC lagged those in vStr, with short (∼1 ms) time lags.
View Article and Find Full Text PDFThe human and rodent ventral striatal local field potentials show striking oscillations in the gamma band (~ 40-100 Hz), which have been linked to aspects of behaviour such as reward anticipation and delivery, movement initiation, learning from feedback, and decision-making. These oscillations show a rich temporal organization, whose relationship with behavioural variables is not well understood. Here, we show that, in rats performing a conditioned approach task, low-gamma and high-gamma oscillations during an immobile reward anticipation epoch were largely insensitive to outcome value, even though rats distinguished behaviourally between different outcomes, and single units encoded outcome value.
View Article and Find Full Text PDFTrends Cogn Sci
December 2014
A network of brain structures including hippocampus (HC), prefrontal cortex, and striatum controls goal-directed behavior and decision making. However, the neural mechanisms underlying these functions are unknown. Here, we review the role of 'internally generated sequences': structured, multi-neuron firing patterns in the network that are not confined to signaling the current state or location of an agent, but are generated on the basis of internal brain dynamics.
View Article and Find Full Text PDFThe concept of the reward prediction error-the difference between reward obtained and reward predicted-continues to be a focal point for much theoretical and experimental work in psychology, cognitive science, and neuroscience. Models that rely on reward prediction errors typically assume a single learning rate for positive and negative prediction errors. However, behavioral data indicate that better-than-expected and worse-than-expected outcomes often do not have symmetric impacts on learning and decision-making.
View Article and Find Full Text PDFDecision making is impacted by uncertainty and risk (i.e., variance).
View Article and Find Full Text PDFThe spike timing of spatially tuned cells throughout the rodent hippocampal formation displays a strikingly robust and precise organization. In individual place cells, spikes precess relative to the theta local field potential (6-10 Hz) as an animal traverses a place field. At the population level, theta cycles shape repeated, compressed place cell sequences that correspond to coherent paths.
View Article and Find Full Text PDFThe encoding and storage of experience by the hippocampus is essential for the formation of episodic memories and the transformation of individual experiences into semantic structures such as maps and schemas. The rodent hippocampus compresses ongoing experience into repeating theta sequences, but the factors determining the content of theta sequences are not understood. Here we first show that the spatial paths represented by theta sequences in rats extend farther in front of the rat during acceleration and higher running speeds and begin farther behind the rat during deceleration.
View Article and Find Full Text PDFCurr Opin Neurobiol
June 2011
Extensive evidence implicates the ventral striatum in multiple distinct facets of action selection. Early work established a role in modulating ongoing behavior, as engaged by the energizing and directing influences of motivationally relevant cues and the willingness to expend effort in order to obtain reward. More recently, reinforcement learning models have suggested the notion of ventral striatum primarily as an evaluation step during learning, which serves as a critic to update a separate actor.
View Article and Find Full Text PDF