Despite indisputable benefits of different exercise modes, the molecular underpinnings of their divergent responses remain unclear. We investigate post-translational modifications in human skeletal muscle following 12 weeks of high-intensity aerobic interval or resistance exercise training. High-intensity aerobic training induces acetylproteome modifications including several mitochondrial proteins, indicating post-translational regulation of energetics machinery, whereas resistance exercise training regulates phosphoproteomic modifications of contractile/cytoskeletal machinery, consistent with greater strength.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2024
Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e.
View Article and Find Full Text PDFRegular exercise and antihyperglycemic drugs are front-line treatments for type-2 diabetes and related metabolic disorders. Leading drugs are metformin, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide 1 receptor agonists. Each class has strong individual efficacy to treat hyperglycemia, yet the combination with exercise can yield varied results, some of which include blunting of expected metabolic benefits.
View Article and Find Full Text PDFJ Appl Physiol (1985)
December 2023
Substantial divergence in cardio-metabolic risk, muscle size, and performance exists between men and women. Considering the pivotal role of skeletal muscle in human physiology, we investigated and found, based on RNA sequencing (RNA-seq), that differences in the muscle transcriptome between men and women are largely related to testosterone and estradiol and much less related to genes located on the Y chromosome. We demonstrate inherent unique, sex-dependent differences in muscle transcriptional responses to aerobic, resistance, and combined exercise training in young and older cohorts.
View Article and Find Full Text PDFUnlabelled: We investigated the link between enhancement of SI (by hyperinsulinemic-euglycemic clamp) and muscle metabolites after 12 weeks of aerobic (high-intensity interval training [HIIT]), resistance training (RT), or combined training (CT) exercise in 52 lean healthy individuals. Muscle RNA sequencing revealed a significant association between SI after both HIIT and RT and the branched-chain amino acid (BCAA) metabolic pathway. Concurrently with increased expression and activity of branched-chain ketoacid dehydrogenase enzyme, many muscle amino metabolites, including BCAAs, glutamate, phenylalanine, aspartate, asparagine, methionine, and γ-aminobutyric acid, increased with HIIT, supporting the substantial impact of HIIT on amino acid metabolism.
View Article and Find Full Text PDFHigh-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from β-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration.
View Article and Find Full Text PDFThis study investigated how different exercise training modalities influence skeletal muscle mitochondrial dynamics. Healthy [average body mass index (BMI): 25.8 kg/m], sedentary younger and older participants underwent 12 wk of supervised high-intensity aerobic interval training (HIIT; = 13), resistance training (RT; = 14), or combined training (CT; = 11).
View Article and Find Full Text PDFMaximal aerobic exercise capacity [maximal oxygen consumption (V̇o)] is one of the strongest predictors of morbidity and mortality. Aerobic exercise training can increase V̇o, but inter-individual variability is marked and unexplained physiologically. The mechanisms underlying this variability have major clinical implications for extending human healthspan.
View Article and Find Full Text PDFJ Appl Physiol (1985)
February 2023
Aerobic training remodels the quantity and quality (function per unit) of skeletal muscle mitochondria to promote substrate oxidation, however, there remain key gaps in understanding the underlying mechanisms during initial training adaptations. We used short-term high-intensity interval training (HIIT) to determine changes to mitochondrial respiration and regulatory pathways that occur early in remodeling. Fifteen normal-weight sedentary adults started seven sessions of HIIT over 14 days and 14 participants completed the intervention.
View Article and Find Full Text PDFHigh dietary fat intake induces significant whole-body and skeletal muscle adaptations in mice, including increased capacity for fat oxidation and mitochondrial biogenesis. The impact of a diet that is high in fat and simple sugars (i.e.
View Article and Find Full Text PDFSenescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization.
View Article and Find Full Text PDFPhysiol Behav
October 2022
Cephalic phase insulin release (CPIR) is a rapid pulse of insulin secreted within minutes of food-related sensory stimulation. Understanding the mechanisms underlying CPIR in humans has been hindered by its small observed effect size and high variability within and between studies. One contributing factor to these limitations may be the use of peripherally measured insulin as an indicator of secreted insulin, since a substantial portion of insulin is metabolized by the liver before delivery to peripheral circulation.
View Article and Find Full Text PDFResistance exercise training (RET) is an effective countermeasure to sarcopenia, related frailty and metabolic disorders. Here, we show that an RET-induced increase in PGC-1α4 (an isoform of the transcriptional co-activator PGC-1α) expression not only promotes muscle hypertrophy but also enhances glycolysis, providing a rapid supply of ATP for muscle contractions. In human skeletal muscle, PGC-1α4 binds to the nuclear receptor PPARβ following RET, resulting in downstream effects on the expressions of key glycolytic genes.
View Article and Find Full Text PDFWe previously reported xanthohumol (XN), and its synthetic derivative tetrahydro-XN (TXN), attenuates high-fat diet (HFD)-induced obesity and metabolic syndrome in C57Bl/6J mice. The objective of the current study was to determine the effect of XN and TXN on lipid accumulation in the liver. Non-supplemented mice were unable to adapt their caloric intake to 60% HFD, resulting in obesity and hepatic steatosis; however, TXN reduced weight gain and decreased hepatic steatosis.
View Article and Find Full Text PDFIntroduction: Skeletal muscle mitochondria have dynamic shifts in oxidative metabolism to meet energy demands of aerobic exercise. Specific complexes oxidize lipid and nonlipid substrates. It is unclear if aerobic exercise stimulates intrinsic oxidative metabolism of mitochondria or varies between substrates.
View Article and Find Full Text PDFDietary nitrate supplementation improves exercise performance by reducing the oxygen cost of exercise and enhancing skeletal muscle function. However, the mechanisms underlying these effects are not well understood. The purpose of this study was to assess changes in skeletal muscle energy metabolism associated with exercise performance in a zebrafish model.
View Article and Find Full Text PDFLipid overload of the mitochondria is linked to the development of insulin resistance in skeletal muscle which may be a contributing factor to the progression of type 2 diabetes during obesity. The targeted degradation of mitochondria through autophagy, termed mitophagy, contributes to the mitochondrial adaptive response to changes in dietary fat. Our previous work demonstrates long-term (2-4 months) consumption of a high-fat diet increases mitochondrial lipid oxidation capacity but does not alter markers of mitophagy in mice.
View Article and Find Full Text PDFIncreasing exercise capacity promotes healthy aging and is strongly associated with lower mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to exercise performance in humans and rats to dissect the inherent and response components of aerobic exercise capacity. Using rat models selected for intrinsic and acquired aerobic capacity, we determined that the high aerobic capacity muscle transcriptome is associated with pathways for tissue oxygenation and vascularization.
View Article and Find Full Text PDFMed Sci Sports Exerc
March 2021
Introduction: Evidence from model systems implicates long-chain acyl-coenzyme A synthetase (ACSL) as key regulators of skeletal muscle fat oxidation and fat storage; however, such roles remain underexplored in humans.
Purpose: We sought to determine the protein expression of ACSL isoforms in skeletal muscle at rest and in response to acute exercise and identify relationships between skeletal muscle ACSL and measures of fat metabolism in humans.
Methods: Sedentary adults (n = 14 [4 males and 10 females], body mass index = 22.
Understanding the mechanisms regulating mitochondrial respiratory function and adaptations to metabolic challenges, such as exercise and high dietary fat, is necessary to promote skeletal muscle health and attenuate metabolic disease. Autophagy is a constitutively active degradation pathway that promotes mitochondrial turnover and transiently increases postexercise. Recent evidence indicates Bcl2 mediates exercise-induced autophagy and skeletal muscle adaptions to training during high-fat diet.
View Article and Find Full Text PDFBackground: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia.
View Article and Find Full Text PDFMed Sci Sports Exerc
March 2020
Introduction: Long-chain acyl-CoA synthetases (ACSL) are implicated as regulators of oxidation and storage of fatty acids within skeletal muscle; however, to what extent diet and exercise alter skeletal muscle ACSL remains poorly understood.
Purpose: This study aimed to determine the effects of diet and exercise training on skeletal muscle ACSL and to examine relationships between ACSL1 and ACSL6 and fat oxidation and fat storage, respectively.
Methods: Male C57BL/6J mice consumed a 60% high-fat diet (HFD) for 12 wk to induce obesity compared with low-fat diet (LFD).
J Nutr
December 2019
Background: Dietary nitrate improves exercise performance by reducing the oxygen cost of exercise, although the mechanisms responsible are not fully understood.
Objectives: We tested the hypothesis that nitrate and nitrite treatment would lower the oxygen cost of exercise by improving mitochondrial function and stimulating changes in the availability of metabolic fuels for energy production.
Methods: We treated 9-mo-old zebrafish with nitrate (sodium nitrate, 606.
Am J Physiol Cell Physiol
August 2019
Rat L6 and mouse C2C12 cell lines are commonly used to investigate myocellular metabolism. Mitochondrial characteristics of these cell lines remain poorly understood despite mitochondria being implicated in the development of various metabolic diseases. To address this need, we performed high-resolution respirometry to determine rates of oxygen consumption and HO emission in suspended myoblasts during multiple substrate-uncoupler-inhibitor titration protocols.
View Article and Find Full Text PDF