Publications by authors named "Matthew C Hansen"

Global forests provide key ecosystem services, from climate regulation to biodiversity habitat, but are under increasing pressure from the combined impacts of climate and land use change. Here, we show that forest disturbance due to fire is growing globally, with the most dramatic increases in intact forest landscapes, highlighting an existential threat to remaining high biomass, high biodiversity forests. The global annual area of forest disturbance due to fire for 2023 and 2024 was highest since the beginning of monitoring in 2001.

View Article and Find Full Text PDF

Naturally regenerated forests and managed tree systems provide different levels of carbon, biodiversity, and livelihood benefits. Here, we show that tree cover gains in the moist tropics during 1982-2015 were 56% ± 3% naturally regenerated forests and 27% ± 2.6% managed tree systems, with these differences in forest type, not only natural conditions (climate, soil, and topography), driving observed carbon recovery rates.

View Article and Find Full Text PDF

Indonesia has experienced rapid primary forest loss, second only to Brazil in modern history. We examined the fates of Indonesian deforested areas, immediately after clearing and over time, to quantify deforestation drivers in Indonesia. Using time-series satellite data, we tracked degradation and clearing events in intact and degraded natural forests from 1991 to 2020, as well as land use trajectories after forest loss.

View Article and Find Full Text PDF

Tropical deforestation continues at alarming rates with profound impacts on ecosystems, climate, and livelihoods, prompting renewed commitments to halt its continuation. Although it is well established that agriculture is a dominant driver of deforestation, rates and mechanisms remain disputed and often lack a clear evidence base. We synthesize the best available pantropical evidence to provide clarity on how agriculture drives deforestation.

View Article and Find Full Text PDF

Spatiotemporally consistent data on global cropland extent is essential for tracking progress towards sustainable food production. In the present study, we present an analysis of global cropland area change for the first two decades of the twenty-first century derived from satellite data time-series. We estimate that, in 2019, the cropland area was 1,244 Mha with a corresponding total annual net primary production (NPP) of 5.

View Article and Find Full Text PDF

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero-deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data.

View Article and Find Full Text PDF

Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent's land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity.

View Article and Find Full Text PDF

Tropical forest fragmentation results in habitat and biodiversity loss and increased carbon emissions. Here, we link an increased likelihood of tropical forest loss to decreasing fragment size, particularly in primary forests. The relationship holds for protected areas, albeit with half the rate of loss compared with all fragments.

View Article and Find Full Text PDF

Baccini (Reports, 13 October 2017, p. 230) report MODIS-derived pantropical forest carbon change, with spatial patterns of carbon loss that do not correspond to higher-resolution Landsat-derived tree cover loss. The assumption that map results are unbiased and free of commission and omission errors is not supported.

View Article and Find Full Text PDF

Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we report an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.

View Article and Find Full Text PDF

A regional assessment of forest disturbance dynamics from 2000 to 2014 was performed for the Congo Basin countries using time-series satellite data. Area of forest loss was estimated and disaggregated by predisturbance forest type and direct disturbance driver. An estimated 84% of forest disturbance area in the region is due to small-scale, nonmechanized forest clearing for agriculture.

View Article and Find Full Text PDF

Global maps of forest loss depict the scale and magnitude of forest disturbance, yet companies, governments, and nongovernmental organizations need to distinguish permanent conversion (i.e., deforestation) from temporary loss from forestry or wildfire.

View Article and Find Full Text PDF

Land change is a cause and consequence of global environmental change. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services. However, quantification of global land change is lacking.

View Article and Find Full Text PDF

The lack of sufficient ground truth data has always constrained supervised learning, thereby hindering the generation of up-to-date satellite-derived thematic maps. This is all the more true for those applications requiring frequent updates over large areas such as cropland mapping. Therefore, we present a method enabling the automated production of spatially consistent cropland maps at the national scale, based on spectral-temporal features and outdated land cover information.

View Article and Find Full Text PDF

Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil's national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000-2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance.

View Article and Find Full Text PDF

An intact forest landscape (IFL) is a seamless mosaic of forest and naturally treeless ecosystems with no remotely detected signs of human activity and a minimum area of 500 km. IFLs are critical for stabilizing terrestrial carbon storage, harboring biodiversity, regulating hydrological regimes, and providing other ecosystem functions. Although the remaining IFLs comprise only 20% of tropical forest area, they account for 40% of the total aboveground tropical forest carbon.

View Article and Find Full Text PDF

The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers.

View Article and Find Full Text PDF

Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-governmental organizations that signed the New York Declaration on Forests (NYDF). We assemble and refine a robust dataset to establish a 2001-2013 benchmark for average annual carbon emissions from gross tropical deforestation at 2.270 Gt CO2 yr(-1).

View Article and Find Full Text PDF

Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010.

View Article and Find Full Text PDF

To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas ("concessions") for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17-127%, 44-129%, or 3.

View Article and Find Full Text PDF

Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it.

View Article and Find Full Text PDF

Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.

View Article and Find Full Text PDF