Publications by authors named "Matthew B Thomas"

Biological invasions are profoundly altering Earth's ecosystems, but generalities about the effects of nonnative species on the diversity and productivity of native communities have been elusive. This lack of generality may reflect the limited spatial and temporal extents of most previous studies. Using >5 million tree measurements across eastern US forests from 1995 to 2023, we quantified temporal trends in tree diversity and biomass.

View Article and Find Full Text PDF

Mosquito infection experiments that characterise how sporogony changes with temperature are increasingly being used to parameterise malaria transmission models. In these experiments, mosquitoes are exposed to a range of temperatures, with each group experiencing a single temperature. Diurnal temperature variation can, however, affect the sporogonic cycle of Plasmodium parasites.

View Article and Find Full Text PDF

The distribution and abundance of ectothermic mosquitoes are strongly affected by temperature, but mechanisms remain unexplored. We describe the effect of temperature on the transcriptome of Anopheles stephensi, an invasive vector of human malaria. Adult females were maintained across a range of mean temperatures (20 °C, 24 °C and 28 °C), with daily fluctuations of +5 °C and -4 °C at each mean temperature.

View Article and Find Full Text PDF

Biological control has been effectively exploited by mankind since 300 CE. By promoting the natural regulation of pests, weeds, and diseases, it produces societal benefits at the food-environment-health nexus. Here we scrutinize biological control endeavours and their social-ecological outcomes through a holistic 'One-Health' lens, recognizing that the health of humans, animals, plants, and the wider environment are linked and interdependent.

View Article and Find Full Text PDF

Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change.

View Article and Find Full Text PDF

Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses.

View Article and Find Full Text PDF

Malaria is a life-threatening disease caused by parasites transmitted by mosquitoes. In 2021, more than 247 million cases of malaria were reported worldwide, with an estimated 619,000 deaths. While malaria incidence has decreased globally in recent decades, some public health gains have plateaued, and many endemic hotspots still face high transmission rates.

View Article and Find Full Text PDF

Background: Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medical entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode of action-disruption of ATP mediated energy transfer in mitochondria-it may have direct action on energy transfer in the flight muscle cells of mosquitoes.

View Article and Find Full Text PDF

Background: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions.

View Article and Find Full Text PDF

Background: A better understanding of vector distribution and malaria transmission dynamics at a local scale is essential for implementing and evaluating effectiveness of vector control strategies. Through the data gathered in the framework of a cluster randomized controlled trial (CRT) evaluating the In2Care (Wageningen, Netherlands) Eave Tubes strategy, the distribution of the Anopheles vector, their biting behaviour and malaria transmission dynamics were investigated in Gbêkê region, central Côte d'Ivoire.

Methods: From May 2017 to April 2019, adult mosquitoes were collected monthly using human landing catches (HLC) in twenty villages in Gbêkê region.

View Article and Find Full Text PDF

Background: In recent years, the downward trajectory of malaria transmission has slowed and, in some places, reversed. New tools are needed to further reduce malaria transmission. One approach that has received recent attention is a novel house-based intervention comprising window screening (S) and general house repairs to make the house more mosquito proof, together with EaveTubes (ET) that provide an innovative way of targeting mosquitoes with insecticides as they search for human hosts at night.

View Article and Find Full Text PDF

The In2Care EaveTube is a house modification designed to block and kill malaria mosquitoes using an electrostatic netting treated with insecticide powder. A previous study demonstrated prolonged duration of effective action of insecticide-treated electrostatic netting in a semi-field setting. As part of a cluster randomized controlled trial (CRT) of the EaveTube intervention in Côte d'Ivoire, we investigated the residual efficacy of a pyrethroid insecticide deployed in EaveTubes under village conditions of use.

View Article and Find Full Text PDF

Mathematical models of vector-borne infections, including malaria, often assume age-independent mortality rates of vectors, despite evidence that many insects senesce. In this study we present survival data on insecticide-resistant Anopheles gambiae s.l.

View Article and Find Full Text PDF

Background: A study was conducted prior to implementing a cluster-randomized controlled trial (CRT) of a lethal house lure strategy in central Côte d'Ivoire to provide baseline information on malaria indicators in 40 villages across five health districts.

Methods: Human landing catches (HLC) were performed between November and December 2016, capturing mosquitoes indoors and outdoors between 18.00 and 08.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is a correction to an article identified by the DOI: 10.1371/journal.pntd.0005568.
  • This means that there was an error or mistake in the original publication that needs to be addressed.
  • Corrections like this are common in academic publishing to ensure the accuracy and integrity of research findings.
View Article and Find Full Text PDF

Background: There is a pressing need to improve understanding of how insecticide resistance affects the functional performance of insecticide-treated nets (ITNs). Standard WHO insecticide resistance monitoring assays are designed for resistance surveillance and do not necessarily provide insight into how different frequencies, mechanisms or intensities of resistance affect the ability of ITNs to reduce malaria transmission.

Methods: The current study presents some novel laboratory-based assays that attempt to better simulate realistic exposure of mosquitoes to ITNs and to quantify impact of exposure not only on instantaneous mortality, but also on blood-feeding and longevity, two traits that are central to transmission.

View Article and Find Full Text PDF

Background: There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae.

View Article and Find Full Text PDF

New malaria control tools and tailoring interventions to local contexts are needed to reduce the malaria burden and meet global goals. The housing modification, screening plus a targeted house-based insecticide delivery system called the In2Care® Eave Tubes, has been shown to reduce clinical malaria in a large cluster randomised controlled trial. However, the widescale suitability of this approach is unknown.

View Article and Find Full Text PDF

The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, including dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate change, we expect an increase in both global mean temperatures and extreme climatic events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to temperatures beyond their upper thermal limits.

View Article and Find Full Text PDF

From 2004 to 2019, insecticide-treated bednets (ITNs) have been the most effective tool for reducing malaria morbidity and mortality in sub-Saharan Africa. Recently, however, the decline in malaria cases and deaths has stalled. Some suggest that this inertia is due to increasing resistance in malaria vectors to the pyrethroid insecticides used for treating ITNs.

View Article and Find Full Text PDF

Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time.

View Article and Find Full Text PDF

Background: New vector control tools are required to sustain the fight against malaria. Lethal house lures, which target mosquitoes as they attempt to enter houses to blood feed, are one approach. Here we evaluated lethal house lures consisting of In2Care (Wageningen, Netherlands) Eave Tubes, which provide point-source insecticide treatments against host-seeking mosquitoes, in combination with house screening, which aims to reduce mosquito entry.

View Article and Find Full Text PDF

Housing improvement such as blocking eaves and screening windows can help in reducing exposure to indoor biting mosquitoes. The impacts of physical barriers could potentially be boosted by the addition of a mechanism that kills mosquitoes as they attempt to enter the house. One example is to combine household screening with EaveTubes, which are insecticide-treated tubes inserted into closed eaves that attract and kill host-searching mosquitoes.

View Article and Find Full Text PDF

Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d'Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An.

View Article and Find Full Text PDF