Background: This study focuses on modeling a population-based input function (PBIF) in dynamic ⁶⁸Ga-DOTATOC PET/CT exams, with the aim of developing clinically adoptable protocols. The PBIF is derived from an image-derived input function (IDIF), ensuring a non-invasive and standardized approach to tracer kinetic modeling.
Methods: Patients with well-differentiated neuroendocrine tumors were included from the GAPETNET clinical trial (n = 37), divided into a PBIF modeling group (n = 20) and an independent validation group (n = 17).
Background: A current limitation to the use of lung PET/CT is the absence of a tool that reliably and reproducibly quantifies the intensity of tracer uptake. We aim to develop a quantitative approach for lung perfusion PET/CT imaging. Sixty patients who underwent [68Ga]Ga-MAA PET/CT scans before (M0) and 3 months (M3) after completion of radiotherapy were analyzed.
View Article and Find Full Text PDFBackground: The aim was to investigate the feasibility of a shortened dynamic whole-body (dWB) FDG-PET/CT protocol and Patlak imaging using a population-based input function (PBIF), instead of an image-derived input function (IDIF) across the 60-min post-injection period, and study its effect on the FDG influx rate (Ki) quantification in patients with metastatic melanoma (MM) undergoing immunotherapy.
Methods: Thirty-seven patients were enrolled, including a PBIF modeling group (n = 17) and an independent validation cohort (n = 20) of MM from the ongoing prospective IMMUNOPET2 trial. All dWB-PET data were acquired on Vision 600 PET/CT systems.