Virologie (Montrouge)
April 2025
Several Old World and New World Mammarenavirus are responsible for hemorrhagic fever in humans. These enveloped viruses have a bi-segmented ambisense RNA genome that encodes four proteins. All Mammarenavirus identified to date share a common dependency on myristoylation: the addition of the C14 myristic acid on the N-terminal G2 residue on two of their proteins.
View Article and Find Full Text PDFSterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking.
View Article and Find Full Text PDFISG20 is an IFN-induced 3'-5' RNA exonuclease that acts as a broad antiviral factor. At present, the features that expose RNA to ISG20 remain unclear, although recent studies have pointed to the modulatory role of epitranscriptomic modifications in the susceptibility of target RNAs to ISG20. These findings raise the question as to how cellular RNAs, on which these modifications are abundant, cope with ISG20.
View Article and Find Full Text PDFMed Sci (Paris)
November 2023
Arenaviruses are a global threat, causing thousands of deaths each year in several countries around the world. Despite strong efforts in the development of vaccine candidates, vaccines against Lassa fever or Bolivian and Venezuelan hemorrhagic fevers are yet to be licensed for a use in humans. In this synthesis, we present the arenaviruses causing fatal diseases in humans and the main vaccine candidates that have been developed over the past decades with an emphasis on the measles-Lassa vaccine, the first Lassa vaccine ever tested in humans, and on the MOPEVAC platform that can potentially be used as a pan-arenavirus vaccine platform.
View Article and Find Full Text PDFViral hemorrhagic fevers (HF) are a group of acute febrile diseases with high mortality rates. Although hemostatic dysfunction appears to be a major determinant of the severity of the disease, it is still unclear what pathogenic mechanisms lead to it. In clinical studies it is found that arenaviruses, such as Lassa, Machupo, and Guanarito viruses cause HF that vary in symptoms and biological alterations.
View Article and Find Full Text PDFBackground: Lassa fever is a substantial health burden in west Africa. We evaluated the safety, tolerability, and immunogenicity of a recombinant, live-attenuated, measles-vectored Lassa fever vaccine candidate (MV-LASV).
Methods: This first-in-human phase 1 trial-consisting of an open-label dose-escalation stage and an observer-blinded, randomised, placebo-controlled treatment stage-was conducted at a single site at the University of Antwerp, Antwerp, Belgium, and involved healthy adults aged 18-55 years.
Lassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination.
View Article and Find Full Text PDFPathogenic New World arenaviruses (NWAs) cause haemorrhagic fevers and can have high mortality rates, as shown in outbreaks in South America. Neutralizing antibodies (Abs) are critical for protection from NWAs. Having shown that the MOPEVAC vaccine, based on a hyperattenuated arenavirus, induces neutralizing Abs against Lassa fever, we hypothesized that expression of NWA glycoproteins in this platform might protect against NWAs.
View Article and Find Full Text PDFThe area of Lassa virus (LASV) circulation is expanding, with the emergence of highly pathogenic new LASV lineages. Benin recently became an endemic country for LASV and has seen the emergence of a new LASV lineage (VII). The first two outbreaks in 2014 and 2016 showed a relatively high mortality rate compared to other outbreaks.
View Article and Find Full Text PDFA safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP).
View Article and Find Full Text PDFLassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease.
View Article and Find Full Text PDFOpen Forum Infect Dis
December 2019
Background: With the increasing frequency and impact of Ebola virus disease (EVD) outbreaks illustrated by recent epidemics, a good understanding of the extent of viral persistance or ribonucleic acid (RNA) detection in body fluids from survivors is urgently needed.
Methods: Ebola viral RNA shedding was studied with molecular assays in semen (n = 1368), urine (n = 1875), cervicovaginal fluid (n = 549), saliva (n = 900), breast milk (n = 168), and feces (n = 558) from EVD survivors in Guinea (PostEbogui cohort, n = 802) at a regular base period until 40 months after inclusion.
Results: Twenty-seven of 277 (9.
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined.
View Article and Find Full Text PDFCertain arenaviruses that circulate in rodent populations can cause life-threatening hemorrhagic fevers when they infect humans. Due to their efficient transmission, arenaviruses pose a severe risk for outbreaks and might be exploited as biological weapons. Effective countermeasures against these viruses are highly desired.
View Article and Find Full Text PDFLassa fever is a major threat in Western Africa. The large number of people living at risk for this disease calls for the development of a vaccine against Lassa virus (LASV). We generated live-attenuated LASV vaccines based on measles virus and Mopeia virus platforms and expressing different LASV antigens, with the aim to develop a vaccine able to protect after a single shot.
View Article and Find Full Text PDFHere, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a -endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents -endocytosis, while its exchange with the nectin-4 tail reverses transfer direction.
View Article and Find Full Text PDFJCI Insight
January 2019
Background: The West African Ebola virus epidemic from 2014-2016 highlighted the lack of knowledge about the pathogenicity of the virus and the factors responsible for outcome. A performant and rapid diagnosis is of crucial importance, as is overcoming the difficulty of providing high-quality patient management during such an extensive outbreak. Here, we propose to study the role of the immune mediators during Ebola virus disease and to define some molecules of importance in the outcome.
View Article and Find Full Text PDFLassa virus (LASV) is responsible for a viral hemorrhagic fever in humans and the death of 3,000 to 5,000 people every year. The immune response to LASV is poorly understood, but type I interferon (IFN-I) and T-cell responses appear to be critical for the host. We studied the response of myeloid dendritic cells (mDC) to LASV, as mDCs are involved in both IFN-I production and T-cell activation.
View Article and Find Full Text PDFSeveral Old World and New World arenaviruses are responsible for severe endemic and epidemic hemorrhagic fevers, whereas other members of the family are nonpathogenic. To date, no approved vaccines, antivirals, or specific treatments are available, except for Junín virus. However, protection of nonhuman primates against Lassa fever virus (LASV) is possible through the inoculation of the closely related but nonpathogenic Mopeia virus (MOPV) before challenge with LASV.
View Article and Find Full Text PDFAbout 15 years ago, several groups initially described the release of virus like particles (VLPs) upon expression of Ebola virus VP40 in mammalian cells. Further development of the protocol later allowed for the dissection of the Ebola virus budding mechanism and for the identification of critical VP40 residues involved in this process. VLPs are now produced routinely in several laboratories as a tool to study virus entry or egress and have even been proposed as vaccine candidates against Ebola virus disease.
View Article and Find Full Text PDFThe pathogenesis of Ebola virus (EBOV) disease (EVD) is poorly characterized. The establishment of well-equipped diagnostic laboratories close to Ebola treatment centers (ETCs) has made it possible to obtain relevant virological and biological data during the course of EVD and to assess their association with the clinical course and different outcomes of the disease. We were responsible for diagnosing EBOV infection in patients admitted to two ETCs in forested areas of Guinea.
View Article and Find Full Text PDFMethods Mol Biol
January 2018
While most secreted proteins use the classical endoplasmic reticulum (ER)-Golgi secretion pathway to reach the extracellular medium, a few proteins are secreted through unconventional secretary pathways. Viral proteins can be secreted through unconventional secretion pathways. Here, we describe how we have recently demonstrated that the Ebola virus (EBOV) matrix protein VP40 is released from transfected and infected cells in a soluble form through an unconventional secretion pathway.
View Article and Find Full Text PDFUnlabelled: Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood.
View Article and Find Full Text PDF