Publications by authors named "Mathias Gallardo"

We developed an automated framework for segmenting low-quality and non-perfusion areas in widefield OCTA images to obtain two key metrics useful for diabetic retinopathy (DR) monitoring: the retinal non-perfusion index (NPI) and foveal avascular zone (FAZ) area. Using 170 images from 88 patients in the EVIRED cohort, we trained two models: Q-NET, which segments low-quality areas, and NPA-NET, which detects non-perfusion areas and the FAZ. Their combined outputs created a 4-class map to calculate NPI and FAZ area.

View Article and Find Full Text PDF

Artificial intelligence(AI)-based methods have been extensively used for the detection and management of various common retinal conditions, but their targeted development for inherited retinal diseases (IRD) is still nascent. In the context of limited availability of retinal subspecialists, genetic testing and genetic counseling, there is a high need for accurate and accessible diagnostic methods. The currently available AI studies, aiming for detection, classification, and prediction of IRD, remain mainly retrospective and include relatively limited numbers of patients due to their scarcity.

View Article and Find Full Text PDF

Purpose: To explore the structural-functional loss relationship from optic-nerve-head- and macula-centred spectral-domain (SD) Optical Coherence Tomography (OCT) images in the full spectrum of glaucoma patients using deep-learning methods.

Methods: A cohort comprising 5238 unique eyes classified as suspects or diagnosed with glaucoma was considered. All patients underwent ophthalmologic examination consisting of standard automated perimetry (SAP), macular OCT, and peri-papillary OCT on the same day.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in deep learning have improved the ability to predict biological markers in Optical Coherence Tomography (OCT) scans for patients with conditions like Age-Related Macular Degeneration and Diabetic Retinopathy.
  • A new method was developed that automatically identifies these markers in relation to Early Treatment Diabetic Retinopathy Study (ETDRS) guidelines using a neural network trained on a substantial dataset of OCT scans.
  • The model demonstrated high accuracy, surpassing previous methods, achieving a correlation coefficient of 0.946 for predicting areas of Intraretinal and Subretinal Fluid across different segments of the eye scan.
View Article and Find Full Text PDF

Purpose: Surgical scene understanding plays a critical role in the technology stack of tomorrow's intervention-assisting systems in endoscopic surgeries. For this, tracking the endoscope pose is a key component, but remains challenging due to illumination conditions, deforming tissues and the breathing motion of organs.

Method: We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation.

View Article and Find Full Text PDF

Introduction: In this retrospective cohort study, we wanted to evaluate the performance and analyze the insights of an artificial intelligence (AI) algorithm in detecting retinal fluid in spectral-domain OCT volume scans from a large cohort of patients with neovascular age-related macular degeneration (AMD) and diabetic macular edema (DME).

Methods: A total of 3,981 OCT volumes from 374 patients with AMD and 11,501 OCT volumes from 811 patients with DME were acquired with Heidelberg-Spectralis OCT device (Heidelberg Engineering Inc., Heidelberg, Germany) between 2013 and 2021.

View Article and Find Full Text PDF

Purpose: To assess the potential of machine learning to predict low and high treatment demand in real life in patients with neovascular age-related macular degeneration (nAMD), retinal vein occlusion (RVO), and diabetic macular edema (DME) treated according to a treat-and-extend regimen (TER).

Design: Retrospective cohort study.

Participants: Three hundred seventy-seven eyes (340 patients) with nAMD and 333 eyes (285 patients) with RVO or DME treated with anti-vascular endothelial growth factor agents (VEGF) according to a predefined TER from 2014 through 2018.

View Article and Find Full Text PDF