Autophagies describe a set of processes in which cells degrade their cytoplasmic contents via various routes that terminate with the lysosome. In macroautophagy (the focus of this review, henceforth autophagy), cytoplasmic contents, including misfolded proteins, protein complexes, dysfunctional organelles, and various pathogens, are captured within double membranes called autophagosomes, which ultimately fuse with lysosomes, after which their contents are degraded. Autophagy is important in maintaining neuronal and glial function; consequently, disrupted autophagy is associated with various neurologic diseases.
View Article and Find Full Text PDFIn neurodegenerative diseases, microglia switch to an activated state, which results in excessive secretion of pro-inflammatory factors. Our work aims to investigate how this paracrine signaling affects neuronal function. Here, we show that activated microglia mediate non-cell-autonomous inhibition of neuronal autophagy, a degradative pathway critical for the removal of toxic, aggregate-prone proteins accumulating in neurodegenerative diseases.
View Article and Find Full Text PDFMutations in optineurin, a ubiquitin-binding adaptor protein, cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease of motor neurons linked to chronic inflammation and protein aggregation. The majority of ALS patients, including those carrying the optineurin mutations, exhibit cytoplasmic mislocalization, ubiquitination, and aggregation of nuclear TAR DNA-binding protein 43 kDa (TDP-43). To address the crosstalk between optineurin and TDP-43, we generated optineurin knockout (KO) neuronal and microglial cell lines using the CRISPR/Cas9 approach.
View Article and Find Full Text PDFCurr Opin Pharmacol
October 2021