Inhibitors of Kelch-like ECH-associated protein 1 (Keap1) increase the activity of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by stalling its ubiquitination and degradation. This enhances the expression of genes encoding proteins involved in drug detoxification, redox homeostasis, and mitochondrial function. Nrf2 activation offers a potential therapeutic approach for conditions including Alzheimer's and Parkinson's diseases, vascular inflammation, and chronic obstructive airway disease.
View Article and Find Full Text PDFCancer chemoprevention is an important strategy to prevent, reverse, or suppress the development of cancer. One of the target pathways that has emerged in recent years is the Keap1-Nrf2-ARE system that regulates the protection of cells against various carcinogens and their metabolites. Increased concentrations of the redox transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces the activation of antioxidant and phase 2 detoxifying genes.
View Article and Find Full Text PDFChem Biol
November 2014
Mitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy.
View Article and Find Full Text PDFOne of the strategies proposed for the chemoprevention of degenerative diseases and cancer involves upregulation of antioxidant and free radical detoxification gene products by increasing the intracellular concentration of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). This can be achieved by disrupting the interaction between Nrf2 and Kelch-like ECH associated protein 1 (Keap1), a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex. Here, we describe the development of a high-throughput fluorescence (or Förster) resonance energy transfer assay for the identification of inhibitors of the Keap1-Nrf2 protein-protein interaction (PPI).
View Article and Find Full Text PDFInhibitors of the Keap1-Nrf2 protein-protein interaction (PPI) have been proposed as potential anti-inflammatory and cancer chemopreventive agents. Such compounds have the potential to increase the intracellular concentrations of Nrf2 in a reversible manner and consequently increase the expression of a battery of gene products with antioxidant response elements (AREs) in their promoter region. In this manuscript we describe the development of peptide inhibitors with modified C- and N-termini and reduced overall charge.
View Article and Find Full Text PDF