Therapy based on the induction of oxidative stress in melanoma cells may constitute a significant breakthrough in overcoming melanoma. Due to the fact that melanocytes are more sensitive to reactive oxygen species (ROS) than normal cells, it is possible to preferentially combat them by further induction of ROS. New derivatives of 4-fluorophenoxy and 4-chlorophenoxy acylthiosemicarbazide were designed and their antimelanoma potential was tested.
View Article and Find Full Text PDFThe epidemiology data for candidiasis indicate an increase in Candida glabrata infections. Moreover, several reports have shown an increasing number of drug-resistant cases of these infections. The source of drug resistance can often be traced to genetic mutations in genes related to a drug's mechanism of action.
View Article and Find Full Text PDFThe paper presents the results of the first spectroscopic, microcalorimetric, and crystallographic study analyzing in great detail the strongly synergistic composition containing a selected 1,3,4-thiadiazole derivative: 4-(5-methyl-1,3,4-thiadiazol-2-ylo)benzene-1,3-diol (C1) and the antibiotic amphotericin B (AmB) in model biological DPPC films additionally modified with sterols: cholesterol (Chol) and ergosterol (Erg). The spectroscopic properties of the analyzed composition were studied with the use of spectroscopic methods, including: measurements of electronic fluorescence and absorption spectra with the technique of resonance light scattering (RLS), measurements of stationary fluorescence anisotropy and time-resolved fluorescence lifetimes with the method of single photon counting (TCSPC), circular dichroism spectra (CD), and infrared FTIR spectra. The mentioned methods were further complemented by including microcalorimetric DSC and crystallographic XRD analyses.
View Article and Find Full Text PDFThe bee-wax combs are "the biggest organ of the bee colony body" as, in addition to their structural functions, they transfer information - pheromones and sounds. The lack of quality control procedures for bee-wax foundation, leads to a deterioration of this raw material, among others with the addition of paraffin and/or stearin. The adulteration of beeswax, from which wax foundation is produced, affects the mechanical strength of the combs and the development of the brood.
View Article and Find Full Text PDFThe paper presents the results of an in-depth spectroscopic, theoretical (quantum chemical), and microbiological study conducted on a promising, synergistic composition of a newly considered 1,3,4-thiadiazole derivative, 1,3,4-thiadiazole: 2,4-dihydroxy--(5-methyl-1,3,4-thiadiazol-2-yl)-benzothioamide (TBTA), and the "gold standard" polyene antibiotic, amphotericin B (AmB). The spectroscopic properties of the system were extensively analyzed with a range of spectroscopic measurement techniques, including electronic fluorescence and absorption spectra, resonance light scattering measurements, circular dichroism spectra, dynamic light scattering, and fluorescence anisotropy, which were further complemented with time-resolved measurements of fluorescence lifetimes performed with the single-photon counting method. The samples were prepared in DMSO solutions and/or PBS buffer to facilitate observation of the monomeric, dimeric, and aggregated forms of the antibiotic previously identified in the literature.
View Article and Find Full Text PDFThe polyene antifungal amphotericin B (AmB) can form giant helical aggregates. We show that microscopic and mesoscopic structural features of its aggregates can be revealed by Raman optical activity (ROA) and electronic circular dichroism (ECD), respectively. The ROA method, which senses molecular structure more locally, elucidates the conformation of the polyene chain of individual AmB molecules in an aggregated state.
View Article and Find Full Text PDFThe rising incidence of fungal infections and the increasing prevalence of antifungal resistance highlight the need for rapid and reliable diagnostic methods. This study investigates the potential of ATR-FTIR spectroscopy to identify spectroscopic markers of drug resistance in selected Candida strains. In this pilot study, ATR-FTIR spectroscopy was employed to analyse the biochemical composition of Candida albicans, Candida glabrata and Candida dubliniensis isolates.
View Article and Find Full Text PDFAmphotericin B (AmB) is a potent antifungal agent with minimal resistance among clinical isolates, but its use is limited by severe side effects. Reducing its toxicity through combination therapy with synergistic compounds is a promising strategy. This study investigates the antifungal potential of 1,3,4-thiadiazole derivatives, focusing on AT2 and AT10, against Candida species.
View Article and Find Full Text PDFObjective: The profile of species and their sensitivity to antifungal drugs isolated from patients in Eastern Poland were analyzed. Identification and drug resistance interpretation issues for clinically significant rare species were investigated.
Methods: A total of 197 yeast isolates were analyzed.
There is currently a growing interest in imino derivatives of compounds such as thiadiazoles and other groups of compounds whose extended π-electron systems enhance their photophysical properties. These compounds also show low toxicity and strong antifungal activity, making them effective against fungal pathogens in crops. For the above reasons, in the first part of the paper, the structure of the selected analogs was considered, and detailed spectroscopic analyses were conducted focusing on the excited state intramolecular proton transfer (ESIPT) process taking place in the same.
View Article and Find Full Text PDFWe present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.
View Article and Find Full Text PDFMethods Appl Fluoresc
December 2024
We studied absorption and fluorescence as well as room temperature phosphorescence (RTP) of 4-methylumbelliferone (4MU) in poly (vinyl alcohol) (PVA) films. We focused our study on the long-wavelength basic form of 4MU with absorption centered at 375 nm. The strong fluorescence with a quantum yield of above 70% appears at ∼430 nm.
View Article and Find Full Text PDFIntroduction: The adulteration of wax foundation is, for many reasons, a growing problem of modern beekeeping not only in Europe but also around the world. Wax foundation contaminated with stearin addition leads to a brood die-off, while paraffin addition negatively affects the strength of combs. It is tenable that such adulterated wax foundation reduces bees' immunity.
View Article and Find Full Text PDFBackground: The use of amphotericin B (AmB) in the therapy of systemic mycosis is associated with strong side effects, including nephrotoxicity, and hepatotoxicity. Therefore, agents that can reduce the toxic effects of AmB while acting synergistically as antifungal agents are currently being sought. 1,3,4-thiadiazole derivatives are promising compounds that have an antifungal activity and act synergically with AmB.
View Article and Find Full Text PDF(NTBD) was extensively studied through stationary UV-vis absorption and fluorescence measurements in various solvents and solvent mixtures and by first-principles quantum chemical calculations. It was observed that while in polar solvents (e.g.
View Article and Find Full Text PDFProsthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin).
View Article and Find Full Text PDFThe FTIR-ATR method coupled with the multivariate analysis of specific spectral areas of samples was developed to characterize two white grape varieties (Sauvignon Blanc and Hibernal) and two blue grape varieties (André and Cabernet Moravia) of wine planted and harvested in the Moravia region, Czech Republic. Principal component analysis and hierarchical cluster analysis were performed using fingerprint regions of FTIR spectra for all wines. The results obtained by principal component analysis in combination with linear discriminant analysis (PCA-LDA) scores yielded clear separation between the four classes of samples and showed very good discrimination between the wine samples, with a 91.
View Article and Find Full Text PDFChronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration.
View Article and Find Full Text PDFInt J Mol Sci
February 2023
In recent years, drug-resistant and multidrug-resistant fungal strains have been more frequently isolated in clinical practice. This phenomenon is responsible for difficulties in the treatment of infections. Therefore, the development of new antifungal drugs is an extremely important challenge.
View Article and Find Full Text PDFSci Rep
December 2022
In the presented study, advanced experimental techniques, including electronic absorption and fluorescence spectroscopies [with Resonance Light Scattering (RLS)], measurements of fluorescence lifetimes in the frequency domain, calculations of dipole moment fluctuations, quantum yields, and radiative and non-radiative transfer constants, were used to characterize a selected analogue from the group of 1,3,4-thiadiazole, namely: 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD), intrinsically capable to demonstrate enol → keto excited-states intramolecular proton transfer (ESIPT) effects. The results of spectroscopic analyses conducted in solvent media as well as selected mixtures were complemented by considering biological properties of the derivative in question, particularly in terms of its potential microbiological activity. The compound demonstrated a dual fluorescence effect in non-polar solvents, e.
View Article and Find Full Text PDFBiomed Pharmacother
February 2023
Background: The systemic inflammatory response following severe COVID-19 is associated with poor outcomes. Several anti-inflammatory medications have been studied in COVID-19 patients. Xanthohumol (Xn), a natural extract from hop cones, possesses strong anti-inflammatory and antioxidative properties.
View Article and Find Full Text PDF4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol (C1) and 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl] benzene1,3-diol (NTBD) are representative derivatives of the thiadiazole group, with a high antimycotic potential and minimal toxicity against normal human fibroblast cells. The present study has proved its ability to synergize with the antifungal activity of AmB. The aim of this work was to evaluate the cytotoxic effects of C1 or NTBD, alone or in combination with AmB, on human renal proximal tubule epithelial cells (RPTECs) in vitro.
View Article and Find Full Text PDFThe potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary β-hydroxy-β-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group.
View Article and Find Full Text PDF