Neurodegeneration is a devastating manifestation in most lysosomal storage disorders (LSDs). Loss-of-function mutations in , encoding palmitoyl-protein thioesterase-1 (PPT1), cause CLN1 disease, a devastating neurodegenerative LSD that has no curative treatment. Numerous proteins in the brain require dynamic S-palmitoylation (palmitoylation-depalmitoylation) for trafficking to their destination.
View Article and Find Full Text PDFThe ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases.
View Article and Find Full Text PDFInactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2021
Infantile neuronal ceroid lipofuscinosis (INCL), also known as CLN1-disease, is a devastating neurodegenerative lysosomal storage disorder (LSD), caused by inactivating mutations in the CLN1 gene. The Cln1 mice, which mimic INCL, manifest progressive neuroinflammation contributing to neurodegeneration. However, the underlying mechanism of neuroinflammation in INCL and in Cln1 mice has remained elusive.
View Article and Find Full Text PDFS-palmitoylation is a reversible posttranslational modification in which a 16-carbon saturated fatty acid (generally palmitate) is attached to specific cysteine residues in polypeptides via thioester linkage. Dynamic S-palmitoylation (palmitoylation-depalmitoylation), like phosphorylation-dephosphorylation, regulates the function of numerous proteins, especially in the brain. While a family of 23 palmitoyl-acyl transferases (PATS), commonly known as ZDHHCs, catalyze S-palmitoylation of proteins, the thioesterases, localized either in the cytoplasm (eg, APT1) or in the lysosome (eg, PPT1) mediate depalmitoylation.
View Article and Find Full Text PDFInfantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease (LSD) caused by inactivating mutations in the CLN1 gene. CLN1 encodes palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme that catalyzes the deacylation of S-palmitoylated proteins to facilitate their degradation and clearance by lysosomal hydrolases. Despite the discovery more than two decades ago that CLN1 mutations causing PPT1-deficiency underlies INCL, the precise molecular mechanism(s) of pathogenesis has remained elusive.
View Article and Find Full Text PDFMutations in at least 13 different genes (called CLNs) underlie various forms of neuronal ceroid lipofuscinoses (NCLs), a group of the most common neurodegenerative lysosomal storage diseases. While inactivating mutations in the CLN1 gene, encoding palmitoyl-protein thioesterases-1 (PPT1), cause infantile NCL (INCL), those in the CLN3 gene, encoding a protein of unknown function, underlie juvenile NCL (JNCL). PPT1 depalmitoylates S-palmitoylated proteins (constituents of ceroid) required for their degradation by lysosomal hydrolases and PPT1-deficiency causes lysosomal accumulation of autofluorescent ceroid leading to INCL.
View Article and Find Full Text PDFMol Neurodegener
January 2019
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan.
View Article and Find Full Text PDFDefective lysosomal acidification contributes to virtually all lysosomal storage disorders (LSDs) and to common neurodegenerative diseases like Alzheimer's and Parkinson's. Despite its fundamental importance, the mechanism(s) underlying this defect remains unclear. The v-ATPase, a multisubunit protein complex composed of cytosolic V1-sector and lysosomal membrane-anchored V0-sector, regulates lysosomal acidification.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2015
Objective: Oxidative stress in the brain is highly prevalent in many neurodegenerative disorders including lysosomal storage disorders, in which neurodegeneration is a devastating manifestation. Despite intense studies, a precise mechanism linking oxidative stress to neuropathology in specific neurodegenerative diseases remains largely unclear.
Methods: Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease caused by mutations in the ceroid lipofuscinosis neuronal-1 (CLN1) gene encoding palmitoyl-protein thioesterase-1.
Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal.
View Article and Find Full Text PDFThis study has compared several synaptosomal parameters in three groups of rats: young (46 months), aged (22-24 months) and antioxidant supplemented aged rats (antioxidant supplementation given with the diet as a combination of N-acetylcysteine, α-lipoic acid and α-tocopherol from 18 months onwards till 22-24 months). The synaptosomes from aged rat brain, in comparison to those of young animals, exhibit an increased membrane potential with altered contents of Na(+) and K(+) under basal incubation condition and in the presence of depolarizing agents. The intrasynaptosomal Ca(2+) is also higher in aged than in young rat.
View Article and Find Full Text PDFAcyl-protein thioesterase-1 (APT1) and APT2 are cytosolic enzymes that catalyze depalmitoylation of membrane-anchored, palmitoylated H-Ras and growth-associated protein-43 (GAP-43), respectively. However, the mechanism(s) of cytosol-membrane shuttling of APT1 and APT2, required for depalmitoylating their substrates H-Ras and GAP-43, respectively, remained largely unknown. Here, we report that both APT1 and APT2 undergo palmitoylation on Cys-2.
View Article and Find Full Text PDFA combination of antioxidants (N-acetyl cysteine, α-lipoic acid, and α-tocopherol) was selected for long term oral supplementation study in rats for protective effects on age-related mitochondrial alterations in the brain. Four groups of rats were chosen: young control (6-7 months); aged rats (22-24 months); aged rats (22-24 months) on daily antioxidant supplementation from 18 month onwards and young rats (6-7 months) on daily antioxidant supplementation from 2 month onwards. The brain mitochondrial functional parameters, status of antioxidant enzymes and accumulation of oxidative damage markers were measured in the four groups of rats.
View Article and Find Full Text PDFThis study has shown that in aged rat brain (22-24 months) crude synaptosomes in comparison to that in young animals (4-6 months), a striking decrease in the activity of Na(+),K(+)-ATPase occurs along with decreased K (m) and V (max) but without any change in enzyme content as seen by immunoblotting. This is associated with an accumulation of peroxidative damage products in aged brain. When rats are given antioxidant supplementation in the diet with a combination of N-acetylcysteine, alpha-tocopherol and alpha-lipoic acid daily from 18 months onwards and sacrificed at 22-24 months for experimentation, the age associated decrease of Na(+),K(+)-ATPase activity, alterations of its kinetic parameters and accumulation of peroxidative damage products in brain synaptosomes are prevented nearly completely.
View Article and Find Full Text PDFDopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25-1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function.
View Article and Find Full Text PDFThis study reveals that, in contrast to dopamine (DA), 3,4 dihydroxyphenylacetic acid (DOPAC) during in vitro incubation up to 2 h causes only marginal inhibition of rat brain mitochondrial respiratory chain activity, a minimal loss of protein free thiols and very little quinoprotein adduct formation. The damaging effects of DA on brain mitochondria are, however, conspicuous and apparently mediated by quinone oxidation products generated by autoxidation of DA as well as catalyzed by a mitochondrial activity, inhibitable by clorgyline (2.5-10 microM) and cyanide (1 mM).
View Article and Find Full Text PDF