Objective: The aim of this study was to evaluate the influence of the sandblasting treatment on the microstructure, optical and mechanical properties of multi-layered translucent zirconia.
Methods: Samples of yttria-stabilized zirconia were prepared by stratifying four layers (L1, L2, L3 and L4) of ML-type KATANA multi-layered monolithic discs, whose surfaces were then sandblasted with alumina particles (110 µm and 0.2 MPa) in order to evaluate its effect on the presence of different crystalline phases as well as on the optical and mechanical properties of each of the four layers.
Objectives: To evaluate hydrogel-based scaffolds embedded with parathyroid hormone (PTH)-loaded mesoporous bioactive glass (MBG) on the enhancement of bone tissue regeneration in vitro.
Materials And Methods: MBG was produced via sol-gel technique followed by PTH solution imbibition. PTH-loaded MBG was blended into the hydrogels and submitted to a lyophilisation process associated with a chemical crosslinking reaction to the production of the scaffolds.
Mater Sci Eng C Mater Biol Appl
July 2020
Membranes for guided bone regeneration represent valuable resources, preventing fibroblast infiltration and aiding anatomical bone reconstruction. Nonetheless, available membranes lack bone regenerative capacity, suitable mechanical behavior, or adequate degradation profile. Therefore, to overcome these limitations, this study developed bilayer membranes with a dense layer (dry phase inversion) of PLGA (poly(lactic-co-glycolic acid)):HAp (hydroxyapatite) - 95:05 (wt%) - and an electrospun layer of PLGA and HAp:β-TCP (β-tricalcium phosphate) with ratios of 60:40, 70:30 and 85:15 (wt%), evaluating its mechanical, morphological and in vitro properties.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2019
Commercially, there are several plates and screws for bone fracture fixation made with PLA, however, its long degradation time and lack of integration with bone structure, provides interest in research using polymers with faster degradation, such as PLGA, and together with bioceramics, in order to improve bioactivity in bone regeneration. Based on this, in this study, bone fracture fixation plates composed of PLGA polymer matrix and combinations of 5 and 10%wt. of bioceramics were processed by microinjection.
View Article and Find Full Text PDFObjectives: The present study is an instrumental evaluation of the optical influence of the type of illuminant, substrate and different thickness on the color of dental ceramics.
Methods: Thirty ceramic disks were prepared from IPS-Empress and IPS-Empress2 in three different thicknesses (1.5, 2.
Hard tissue modification by means of laser irradiation is becoming popular in dentistry, since it promotes assorted responses between the tooth and the restorative material. Some studies on the bond strength of adhesive systems to Nd:YAG irradiated teeth have shown distinctive behaviors when irradiation was applied before or after the adhesive agent. This study evaluated the microtensile bond strength of a commercial adhesive system to dentin irradiated with Nd:YAG laser after adhesive application but prior to polymerization.
View Article and Find Full Text PDF