Metal-organic frameworks (MOFs) have become a highly usable system in various sectors because of their highly ordered structure and high porosity providing them with high storage capacity. However, their use is sometimes forbidden in the food industry due to the presence of some organic compounds which have undesirable effects. Cyclodextrins, which are considered GRAS (Generally Recognized as Safe) by the FDA, comes as a very good alternative to previously used compounds for the development of the MOFs to be used in the food packaging industry, especially in the packaging sector.
View Article and Find Full Text PDFThis study presents fibers based on methacrylic acid-methyl methacrylate (Eudragit L100) as Cu(II) adsorbents, resulting in antimicrobial complexes. Eudragit L100, an anionic copolymer synthesized by radical polymerization, was electrospun in dimethylformamide (DMF) and ethanol (EtOH). The electrospinning process was optimized through a 2-factorial design, with independent variables (copolymer concentration and EtOH/DMF volume ratio) and three repetitions at the central point.
View Article and Find Full Text PDFWe investigated the performance of cotton fabrics coated with DOPO-HQ and Zr-based Metal-organic Frameworks when exposed to fire. The chemical structure of the cotton fabrics before and after the coating was characterized using FTIR spectroscopy, and the surface morphology of cotton and their combustion residues was probed via scanning electron microscopy. In our experiments, we used flammability tests and thermogravimetric methods to understand the burning behavior of the coated fibers, as well as their thermal stability.
View Article and Find Full Text PDFPolymers (Basel)
November 2022
Oregano essential oil was encapsulated in poly-ϵ-caprolactone nanoparticles by a nanoprecipitation method using glycerin as a moisturizer. Nanocapsule characterization was performed by measuring the particle size, colloidal stability and encapsulation efficiency using dynamic light scattering, UV-Vis spectrophotometry and scanning electron microscopy (SEM). The nanoparticles had a mean particle size of 235 nm with a monomodal distribution.
View Article and Find Full Text PDFMetal-organic frameworks are crystalline nanostructures formed by a metal interspersed by an organic binder. These metal-organic materials are examples of nanomaterials applied to textile material in search of new functionalized textiles. Cotton is a cellulosic fiber of great commercial importance, and has good absorption capacity and breathability; however, due to these characteristics, it is susceptible to the development of microorganisms on its surface.
View Article and Find Full Text PDFPolymers (Basel)
July 2022
Metal-organic frameworks (MOFs) have great potential for the development of fire barriers for flammable materials. Accordingly, zirconium-based metal-organic framework (Zr-MOF), branched polyethyleneimine (BPEI), and vinyltriethoxysilane (VTES) were deposited to produce composites assembled on cellulosic fibers to investigate their barrier effects. The structure, morphology, and thermal properties of the cellulosic fibers were characterized using FTIR spectroscopy, SEM, and TGA.
View Article and Find Full Text PDFThe hydrophilicity of fibers is directly related to the comfort of a fabric and represents one of the most important aspects of a textile. Therefore, polyester (PES) modification has focused on an increase in moisture content and a subsequent improvement of the user's experience. Based on the glycerol hygroscopic properties, the main objective has been the enhancement of the hydrophilicity of polyester by glycerol treatments.
View Article and Find Full Text PDFβ-Cyclodextrin (β-CD) is an oligosaccharide composed of seven units of D-(+)-glucopyranose joined by α-1,4 bonds, which is obtained from starch. Its singular trunk conical shape organization, with a well-defined cavity, provides an adequate environment for several types of molecules to be included. Complexation changes the properties of the guest molecules and can increase their stability and bioavailability, protecting against degradation, and reducing their volatility.
View Article and Find Full Text PDFThe use of Metal-Organic Frameworks (MOF) such as HKUST-1 in textiles is an alternative with regard to the development of technologies that are increasingly seeking for functionalities, mainly in the fields of health and hygiene, named biofunctional fabrics. However, the application of the MOF under the surface of the wool fiber can lead to a low durability finish due to its low fixation. Thus, this project aims to perform the direct synthesis of HKUST in the wool fiber, so that a product with good washing durability can be obtained.
View Article and Find Full Text PDFBiofunctional textiles with integrated drug-delivery systems can help in the fight against vector-borne diseases. The use of repellent agents derived from plants and oils is an alternative to DEET (,-diethyl--methylbenzamide), which has disadvantages that include toxic reactions and skin damage. However, some researchers report that oils can be ineffective due to reasons related to uncontrolled release.
View Article and Find Full Text PDFAbstract The aim of this study was to demonstrate the skin penetration of an antioxidant, gallic acid (GA), encapsulated in poly-ε-caprolactone (PCL) microspheres and applied onto textile fabrics, by a specific in vitro percutaneous absorption methodology. Two techniques (particle size distribution and FTIR) were used to characterise the microspheres obtained. The amount of GA-loaded microspheres present in the biofunctional textiles was established before their use as a textile drug delivery system.
View Article and Find Full Text PDF