Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Cyclodextrin (β-CD) is an oligosaccharide composed of seven units of D-(+)-glucopyranose joined by α-1,4 bonds, which is obtained from starch. Its singular trunk conical shape organization, with a well-defined cavity, provides an adequate environment for several types of molecules to be included. Complexation changes the properties of the guest molecules and can increase their stability and bioavailability, protecting against degradation, and reducing their volatility. Thanks to its versatility, biocompatibility, and biodegradability, β-CD is widespread in many research and industrial applications. In this review, we summarize the role of β-CD and its derivatives in the textile industry. First, we present some general physicochemical characteristics, followed by its application in the areas of dyeing, finishing, and wastewater treatment. The review covers the role of β-CD as an auxiliary agent in dyeing, and as a matrix for dye adsorption until chemical modifications are applied as a finishing agent. Finally, new perspectives about its use in textiles, such as in smart materials for microbial control, are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465207PMC
http://dx.doi.org/10.3390/molecules25163624DOI Listing

Publication Analysis

Top Keywords

role β-cd
8
role β-cyclodextrin
4
β-cyclodextrin textile
4
textile industry-review
4
industry-review β-cyclodextrin
4
β-cd
4
β-cyclodextrin β-cd
4
β-cd oligosaccharide
4
oligosaccharide composed
4
composed units
4

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Marine biofouling poses significant economic and environmental challenges, highlighting the need for effective antifouling coatings. We report amphiphilic poly(SBMA--EGDEA) copolymer coatings that resist both marine diatom adhesion and sediment adsorption. The coatings were synthesized via surface-initiated ATRP and RAFT polymerization using hydrophilic sulfobetaine methacrylate (SBMA) and hydrophobic ethylene glycol dicyclopentenyl ether acrylate (EGDEA).

View Article and Find Full Text PDF