Publications by authors named "Manuel Albanese"

Despite effective antiviral drugs that have emerged to combat SARS-CoV-2 infections, novel therapeutic strategies are required to better address the ongoing and future evolutions of the virus. Targeting viral proteases, such as the main protease (Mpro), remains a promising approach. Here, we present a rapid and sensitive luminescence-based reporter system, the i-NSP4/5-Gluc2, to assess Mpro activity.

View Article and Find Full Text PDF

Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32 nanoprotrusions deposit distinct plasma membrane patches onto target T cells.

View Article and Find Full Text PDF

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients.

View Article and Find Full Text PDF

The emergence of more transmissible or aggressive variants of SARS-CoV-2 requires the development of antiviral medication that is quickly adjustable to evolving viral escape mutations. Here we report the synthesis of chemically stabilized small interfering RNA (siRNA) against SARS-CoV-2. The siRNA can be further modified with receptor ligands such as peptides using Cu -catalysed click-chemistry.

View Article and Find Full Text PDF
Article Synopsis
  • Infection-neutralizing antibodies are crucial for protecting against SARS-CoV-2 and its variants, especially as variants like Omicron develop immune escape properties.
  • A study tracked antibody responses in individuals recovering from COVID-19 and those vaccinated with the BNT162b2 mRNA vaccine, revealing that superior neutralization against all variants emerged after two doses for convalescents or a third dose for naive individuals.
  • The findings highlight that a combination of infection and vaccination, or triple vaccination, enhances the quality and effectiveness of antibodies against evolving SARS-CoV-2 variants.
View Article and Find Full Text PDF

Murine leukemia virus (MLV)-presenting cells form stable intercellular contacts with target cells during infection of lymphoid tissue, indicating a role of cell-cell contacts in retrovirus dissemination. Whether host cell adhesion proteins are required for retrovirus spread in vivo remains unknown. Here, we demonstrate that the lymphocyte-function-associated-antigen-1 (LFA1) and its ligand intercellular-adhesion-molecule-1 (ICAM1) are important for cell-contact-dependent transmission of MLV between leukocytes.

View Article and Find Full Text PDF

CD4 T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4 T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4 T cells using optimized cell cultivation and nucleofection conditions of Cas9-guide RNA ribonucleoprotein complexes.

View Article and Find Full Text PDF

Mammalian cells release different types of vesicles, collectively termed extracellular vesicles (EVs). EVs contain cellular microRNAs (miRNAs) with an apparent potential to deliver their miRNA cargo to recipient cells to affect the stability of individual mRNAs and the cells' transcriptome. The extent to which miRNAs are exported via the EV route and whether they contribute to cell-cell communication are controversial.

View Article and Find Full Text PDF

Purpose: To determine risk factors for coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs), characterize symptoms, and evaluate preventive measures against SARS-CoV-2 spread in hospitals.

Methods: In a cross-sectional study conducted between May 27 and August 12, 2020, after the first wave of the COVID-19 pandemic, we obtained serological, epidemiological, occupational as well as COVID-19-related data at a quaternary care, multicenter hospital in Munich, Germany.

Results: 7554 HCWs participated, 2.

View Article and Find Full Text PDF

The human gastric pathogen activates human epithelial cells by a particular combination of mechanisms, including NOD1 and ALPK1-TIFA activation. These mechanisms are characterized by a strong participation of the bacterial pathogenicity island, which forms a type IV secretion system (CagT4SS) that enables the bacteria to transport proteins and diverse bacterial metabolites, including DNA, glycans, and cell wall components, into human host cells. Building on previous findings, we sought to determine the contribution of lipopolysaccharide inner core heptose metabolites (ADP-heptose) in the activation of human phagocytic cells by .

View Article and Find Full Text PDF

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV), a human herpesvirus, encodes 44 microRNAs (miRNAs), which regulate many genes with various functions in EBV-infected cells. Multiple target genes of the EBV miRNAs have been identified, some of which play important roles in adaptive antiviral immune responses. Using EBV mutant derivatives, we identified additional roles of viral miRNAs in governing versatile type I interferon (IFN) responses upon infection of human primary mature B cells.

View Article and Find Full Text PDF

Inflammasomes execute a unique type of cell death known as pyroptosis. Mostly characterized in myeloid cells, caspase-1 activation downstream of an inflammasome sensor results in the cleavage and activation of gasdermin D (GSDMD), which then forms a lytic pore in the plasma membrane. Recently, CARD8 was identified as a novel inflammasome sensor that triggers pyroptosis in myeloid leukemia cells upon inhibition of dipeptidyl-peptidases (DPP).

View Article and Find Full Text PDF

Humanized mice developing functional human T cells endogenously and capable of recognizing cognate human leukocyte antigen-matched tumors are emerging as relevant models for studying human immuno-oncology in vivo. Herein, mice transplanted with human CD34 stem cells and bearing endogenously developed human T cells for >15 weeks were infected with an oncogenic recombinant Epstein-Barr virus (EBV), encoding enhanced firefly luciferase and green fluorescent protein. EBV-firefly luciferase was detectable 1 week after infection by noninvasive optical imaging in the spleen, from where it spread rapidly and systemically.

View Article and Find Full Text PDF

An appropriate immune response requires a tight balance between pro- and anti-inflammatory mechanisms. IL-10 is induced at late time-points during acute inflammatory conditions triggered by TLR-dependent recognition of infectious agents and is involved in setting this balance, operating as a negative regulator of the TLR-dependent signaling pathway. We identified miR-125a~99b~let-7e as an evolutionary conserved microRNA cluster late-induced in human monocytes exposed to the TLR4 agonist LPS as an effect of this IL-10-dependent regulatory loop.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) has established lifelong infection in more than 90% of humanity. While infection is usually controlled by the immune system, the human host fails to completely eliminate the pathogen. Several herpesviral proteins are known to act as immunoevasins, preventing or reducing recognition of EBV-infected cells.

View Article and Find Full Text PDF

Infection with Epstein-Barr virus (EBV) affects most humans worldwide and persists life-long in the presence of robust virus-specific T-cell responses. In both immunocompromised and some immunocompetent people, EBV causes several cancers and lymphoproliferative diseases. EBV transforms B cells in vitro and encodes at least 44 microRNAs (miRNAs), most of which are expressed in EBV-transformed B cells, but their functions are largely unknown.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a tumor virus that establishes lifelong infection in most of humanity, despite eliciting strong and stable virus-specific immune responses. EBV encodes at least 44 miRNAs, most of them with unknown function. Here, we show that multiple EBV miRNAs modulate immune recognition of recently infected primary B cells, EBV's natural target cells.

View Article and Find Full Text PDF