Publications by authors named "Manjri Singh"

The nanoplasmonic impact of chemically synthesized Au nanoparticles (Au NPs) on the performance of GaN nanostructure-based ultraviolet (UV) photodetectors is analyzed. The devices with uniformly distributed Au NPs on GaN nanostructures (nanoislands and nanoflowers) prominently respond toward UV illumination (325 nm) in both self-powered as well as photoconductive modes of operation and have shown fast and stable time-correlated response with significant enhancement in the performance parameters. A comprehensive analysis of the device design, laser power, and bias-dependent responsivity and response time is presented.

View Article and Find Full Text PDF

An increasing number of studies show that cancer stem cells become more invasive and may escape into blood stream and lymph nodes before they have received a lethal dose during radiation therapy. Recently, it has been found that graphene oxide (GO) can selectively inhibit the proliferative expansion of cancer stem cells across multiple tumor types. In this study, we investigate the feasibility of using GO during radiotherapy to synergistically inhibit cancer stem cells, and lower the risk of cancer metastasis and recurrence.

View Article and Find Full Text PDF

Gold nanoparticles, because of their high radiation absorption coefficient and efficient generation of secondary photoelectrons, have been predicted to enhance therapeutic efficacy in radiation therapy. However, high dose for effective treatment limits their use. We have synthesized multifunctional gold nanoclusters (GNCs) that can be used for imaging and radiation therapy.

View Article and Find Full Text PDF

We have synthesized graphene oxide (GO) nanosheets using modified Hummer's method and conjugated it with doxorubicin (DOx), an anticancer drug. Drug release kinetics from GO-DOx conjugate indicated the drug release at acidic pH. MTT assay performed on FaDu hypopharyngeal cancer cell lines revealed that the GO-DOx nanoconjugate inhibited cell proliferation more efficiently compared with pure DOx.

View Article and Find Full Text PDF

Advances in nanotechnology have led to the design of multifunctional nanoparticles capable of cellular imaging, targeted drug delivery, and diagnostics for early cancer detection. We synthesized poly(lactic--glycolic acid) nanoparticles encapsulating a model radiosensitizing drug docetaxel accomplishing localized in situ delivery of the sensitizer to the tumor site. The synthesized nanoparticles have been characterized for their physicochemical properties.

View Article and Find Full Text PDF

The tuneability of oxygen containing groups in graphene oxide (GO) that controls physicochemical properties is highly desirable for device applications. In this context, the thermally reduced graphene oxide (r-GO) powders and spin coated thin films with varying sp2/sp3 carbon network have been prepared using highly exfoliated GO (synthesized using modified Hummer's method with an innovative conjunction of lyophilisation). The additional step of lyophilisation results in the formation of highly exfoliated and monodispersed GO nanosheets as evidenced from FESEM, TEM, XRD, and Raman, FT-IR and UV-Vis spectroscopy.

View Article and Find Full Text PDF

The bipolar resistive switching (BRS) between a metallic low resistance state (LRS) and an insulating high resistance state (HRS) is demonstrated for annealed graphene oxide (GO) thin film-based device structures with aluminum (Al) as one of the contact electrodes. An optimal switching of ∼10 order is recorded for Al/GO (200 °C)/indium tin oxide (ITO) among the device structures in metal (M)/GO (T)/metal (M) configurations (M = Al, Au, or ITO and M = Au or Al), fabricated using GO (T)/metal (M), annealed at different temperatures, T = 100, 200, 300, and 400 °C. The initial Ohmic conduction for electronic transport and the presence of metal contents through GO thin films in the X-ray photoelectron spectroscopy support the physical evidence of Al filament formation between the two electrodes as imaged by the high-resolution transmission electron microscopy.

View Article and Find Full Text PDF