Publications by authors named "Maarten Fornerod"

Mutations in ATP-dependent chromatin remodeler CHD8 cause one of the most frequent monogenetic forms of autism and are associated with brain overgrowth. Nevertheless, the activities of CHD8 in autism-relevant cell types are still poorly understood. Here, we purify the CHD8 protein from human neural stem cells and determine its interaction partners using mass spectrometry.

View Article and Find Full Text PDF

Genomic profiles and prognostic biomarkers in patients with acute myeloid leukemia (AML) from ancestry-diverse populations are underexplored. We analyzed the exomes and transcriptomes of 100 patients with AML with genomically confirmed African ancestry (Black; Alliance) and compared their somatic mutation frequencies with those of 323 self-reported white patients with AML, 55% of whom had genomically confirmed European ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations recurrent in Black patients, including a hitherto unreported PHIP alteration detected in 7% of patients, were found in one white patient or not detected.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates genetic abnormalities in pediatric acute myeloid leukemia (AML) to enhance understanding of the disease and aid in risk stratification and treatment outcomes.* -
  • A cohort of 161 patients underwent molecular profiling, revealing rearrangements in 45% of cases analyzed, including novel mutations related to ERG and NPM1 genes, which are associated with certain characteristics of AML.* -
  • The findings suggest that integrating these advanced genetic testing methods into standard diagnostic protocols could significantly impact clinical care and understanding of pediatric AML.*
View Article and Find Full Text PDF

SMPD4 is a neutral sphingomyelinase implicated in a specific type of congenital microcephaly. Although not intensively studied, SMPD4 deficiency has also been found to cause cell division defects. This suggests a role for SMPD4 in cell-cycle and differentiation.

View Article and Find Full Text PDF

In addition to its structural role in enclosing and protecting the genome, the nuclear envelope (NE) forms a highly adaptive communication interface between the cytoplasm and the nuclear interior in eukaryotic cells. The double membrane of the NE is perforated by nuclear pores lined with large multi-protein structures, called nuclear-pore complexes (NPCs), which selectively allow the bi-directional transport of ions and macromolecular cargo. In order to nucleate a pore, the inner and outer nuclear membrane have to fuse at the site of NPC insertion, a process requiring both lipid bilayers to be deformed into highly curved structures.

View Article and Find Full Text PDF

Unlabelled: Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery.

View Article and Find Full Text PDF

The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping".

View Article and Find Full Text PDF

Objective: Examine the associations of training volume and longest endurance run with (half-)marathon performance and running-related injuries (RRIs) in recreational runners.

Materials And Methods: During the preparation for and directly after the running event, 556 participants of a half marathon and 441 participants of a marathon completed three questionnaires on RRIs, average weekly training volume and the longest endurance run. With finish time, decline in pace during the running event and RRIs as dependent variables, linear and logistic regression analyses were performed to test the associations with weekly training volume and the longest endurance run.

View Article and Find Full Text PDF

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders.

View Article and Find Full Text PDF

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4).

View Article and Find Full Text PDF

The Mediator complex regulates transcription by connecting enhancers to promoters. High Mediator binding density defines super enhancers, which regulate cell-identity genes and oncogenes. Protein interactions of Mediator may explain its role in these processes but have not been identified comprehensively.

View Article and Find Full Text PDF

Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients.

View Article and Find Full Text PDF
Article Synopsis
  • The article referred to by DOI: 10.1371/journal.pgen.1006809 has been corrected to address inaccuracies or errors in the original publication.* -
  • This correction is essential for ensuring the integrity and reliability of the research findings presented in the article.* -
  • Researchers and readers are encouraged to review the updated information to fully understand the implications of the study.*
View Article and Find Full Text PDF

Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes.

View Article and Find Full Text PDF

Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with respect to biology as well as outcome. In this study, we investigated whether known biological subgroups of pediatric AML are reflected by a common microRNA (miRNA) expression pattern. We assayed 665 miRNAs on 165 pediatric AML samples.

View Article and Find Full Text PDF

Acute megakaryoblastic leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) in which cells morphologically resemble abnormal megakaryoblasts. While rare in adults, AMKL accounts for 4-15% of newly diagnosed childhood AML cases. AMKL in individuals without Down syndrome (non-DS-AMKL) is frequently associated with poor clinical outcomes.

View Article and Find Full Text PDF

Although conventional therapies for acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) are effective in inducing remission, many patients relapse upon treatment. Hence, there is an urgent need for novel therapies. PIM kinases are often overexpressed in AML and DLBCL and are therefore an attractive therapeutic target.

View Article and Find Full Text PDF

The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort.

View Article and Find Full Text PDF

Genetic abnormalities and early treatment response are the main prognostic factors in acute myeloid leukemia (AML). Acute megakaryoblastic leukemia (AMKL) is a rare subtype of AML. Deep sequencing has identified CBFA2T3/GLIS2 and NUP98/KDM5A as recurrent aberrations, occurring in similar frequencies as RBM15/MKL1 and KMT2A-rearrangements.

View Article and Find Full Text PDF

Pediatric acute myeloid leukemia (AML) is a heterogeneous disease, characterized by different collaborating karyotypic and molecular abnormalities, which are used in risk group stratification. In ∼20% of the pediatric AML cases a specific genetic aberration is still unknown. Minimally differentiated myeloid leukemia or FAB-type M0 is a rare morphological subtype of AML.

View Article and Find Full Text PDF

Background: One of the most important application spectrums of transcriptomic data is cancer phenotype classification. Many characteristics of transcriptomic data, such as redundant features and technical artifacts, make over-fitting commonplace. Promising classification results often fail to generalize across datasets with different sources, platforms, or preprocessing.

View Article and Find Full Text PDF