Publications by authors named "Lucas Ting"

Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. Although the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNF-α alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNF-α impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism.

View Article and Find Full Text PDF

Objectives: The objective was to compare primary hemostasis between adult ECMO patients and cardiac surgical patients before heparinization and cardiopulmonary bypass. Furthermore, the authors explored whether in vitro treatment of ECMO patient blood samples with recombinant von Willebrand Factor (vWF) or lyophilized platelets improved primary hemostasis in vitro.

Design: Prospective cohort study.

View Article and Find Full Text PDF

Platelets contract forcefully after their activation, contributing to the strength and stability of platelet aggregates and fibrin clots during blood coagulation. Viscoelastic approaches can be used to assess platelet-induced clot strengthening, but they require thrombin and fibrin generation and are unable to measure platelet forces directly. Here, we report a rapid, microfluidic approach for measuring the contractile force of platelet aggregates for the detection of platelet dysfunction.

View Article and Find Full Text PDF

Micropatterning of cells can be used in combination with microposts to control cell shape or cell-to-cell interaction while measuring cellular forces. The protocols in this chapter describe how to make SU8 masters for stamps and microposts, how to use soft lithography to replicate these structures in polydimethylsiloxane, and how to functionalize the surface of the microposts for cell attachment.

View Article and Find Full Text PDF

Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell's substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions.

View Article and Find Full Text PDF

Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces.

View Article and Find Full Text PDF