Background: There is increasing interest in the use of circulating cell-free RNA (cfRNA) in plasma as an analyte for diagnosing and monitoring disease. While it is known that cfRNA can also be isolated from urine, the diagnostic potential of urine cfRNA, particularly relative to plasma cfRNA, remains underexplored.
Methods: Matched plasma and urine were collected from hematopoietic stem cell transplant (HSCT) recipients (n = 24), immune-checkpoint-inhibitor (ICI) recipients with or without acute kidney injury (AKI) (n = 46), and healthy volunteers (n = 5), yielding 297 samples.
Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-seq), a metagenomic sequencing assay that is robust against environmental contamination. The core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing.
View Article and Find Full Text PDFIn eukaryotic cells, ribonucleoproteins (RNPs) form mesoscale condensates by liquid-liquid phase separation that play essential roles in subcellular dynamic compartmentalization. The formation and dissolution of many RNP condensates are finely dependent on the RNA-to-RNP ratio, giving rise to a windowlike phase separation behavior. This is commonly referred to as reentrant liquid condensation (RLC).
View Article and Find Full Text PDF