Publications by authors named "Linh P Nguyen"

Objective: Lumpy skin disease (LSD) is a reemerging viral disease impacting cattle and buffaloes, posing substantial economic risks. However, the expression profile of non-coding RNAs (ncRNAs) in LSD virus (LSDV)-infected bovines has yet to be investigated. In this study, we employed small RNA sequencing (RNA-seq) to assess the expression of various ncRNAs in serum-derived exosomes from LSDV-infected bovines.

View Article and Find Full Text PDF

This study seeks to extensively examine the intentions of Vietnamese male smokers to quit, delving into key factors associated with their inclination toward smoking cessation to gain insights to inform and enhance tobacco control initiatives in the country. The data in this cross-sectional study was informed by the Vietnam Provincial Global Adult Tobacco Survey (PGATS) 2022-2023. A total of 35 974 male smokers aged 15 years and older from 30 provinces and cities in Vietnam were surveyed regarding their intentions to quit.

View Article and Find Full Text PDF

Exosomal miRNAs from individual cells are crucial in regulating the immune response to infectious diseases. In this study, we performed small RNA sequencing (small RNA-seq) analysis to identify the expressed and associated exosomal miRNAs in the serum of cattle infected with lumpy skin disease virus (LSDV). Cattle were infected with a 10 TCID50/mL LSDV Vietnam/HaTinh/CX01 (HT10) strain and exosomal miRNA expression in the serum of infected cattle was analyzed using small RNA sequencing (small RNA-seq).

View Article and Find Full Text PDF

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines.

View Article and Find Full Text PDF

Background: Cancer remains a global health challenge, with rising incidence and mortality rates despite advancements in prevention and treatment. In 2022, cancer was the second leading cause of death worldwide, contributing to approximately 9.7 million deaths and 20 million new cases.

View Article and Find Full Text PDF

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed , an atlas of cysteine ligandability compiled across 416 cancer cell lines.

View Article and Find Full Text PDF

This paper investigates the use of machine learning algorithms to aid medical professionals in the detection and risk assessment of diabetes. The research employed a dataset gathered from individuals with type 2 diabetes in Ninh Binh, Vietnam. A variety of classification algorithms, including Decision Tree Classifier, Logistic Regression, SVC, Ada Boost Classifier, Gradient Boosting Classifier, Random Forest Classifier, and K Neighbors Classifier, were utilized to identify the most suitable algorithm for the dataset.

View Article and Find Full Text PDF
Article Synopsis
  • Drug development is a costly and complicated journey, often relying on traditional 2D cell cultures that don't replicate real tissue environments well.
  • This study introduced a budget-friendly microfluidic device made from common materials, costing only $17.75, which allows for 3D cell cultures under both dynamic and static conditions.
  • Testing showed that under dynamic conditions, cell viability dropped to about 30% after 72 hours when using a specific drug, highlighting the potential of this device to enhance drug testing accuracy and efficiency.
View Article and Find Full Text PDF

Peripheral neuropathy is a common complication of type 2 diabetes mellitus (T2DM) that results in nerve conduction abnormalities. This study aimed to investigate the parameters of nerve conduction in lower extremities among T2DM patients in Vietnam. A cross-sectional study was conducted on 61 T2DM patients aged 18 years and older, diagnosed according to the American Diabetes Association's criteria.

View Article and Find Full Text PDF

Hepatocellular carcinoma is a common type of cancer associated with a high mortality rate. Among several bioactive compounds, Murrayafoline A (MuA) has been proved as a bio substance that exhibits great potentials in treating liver cancer. In order to overcome the high cytotoxicity and low solubility of MuA, a delivery system based on nanocarriers is necessary to deliver MuA towards the desired target.

View Article and Find Full Text PDF

Liposomal encapsulation is a drug delivery strategy with many advantages, such as improved bioavailability, ability to carry large drug loads, as well as controllability and specificity towards various targeted diseased tissues. Currently, most preparation techniques require an additional extrusion or filtering step to obtain monodisperse liposomes with the size of less than 100 nm. In this study, a compact liposome extruder was designed at a cost of $4.

View Article and Find Full Text PDF

GPR15 is a chemoattractant receptor that facilitates colon homing of regulatory and effector CD4 T cells in health and colitis. The molecular mechanisms that control GPR15 expression are not fully known. Here we report the presence of two highly conserved aryl hydrocarbon receptor (AHR) binding sequences in a 3' enhancer of GPR15, leading us to investigate AHR function in regulating GPR15 expression.

View Article and Find Full Text PDF

Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria).

View Article and Find Full Text PDF

Dynamic disorder of the lipid bilayer presents a challenge for establishing structure-function relationships in membranous systems. The resulting structural heterogeneity is especially evident for peripheral and spontaneously inserting membrane proteins, which are not constrained by the well-defined transmembrane topology and exert their action in the context of intimate interaction with lipids. Here, we propose a concerted approach combining depth-dependent fluorescence quenching with Molecular Dynamics simulation to decipher dynamic interactions of membrane proteins with the lipid bilayers.

View Article and Find Full Text PDF

Rationale: Pulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females.

Objective: To evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH.

Methods And Results: Male and female athymic rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration.

View Article and Find Full Text PDF

Background & Aims: Cigarette smoke has been identified as an independent risk factor for chronic pancreatitis (CP). Little is known about the mechanisms by which smoking promotes development of CP. We assessed the effects of aryl hydrocarbon receptor (AhR) ligands found in cigarette smoke on immune cell activation in humans and pancreatic fibrosis in animal models of CP.

View Article and Find Full Text PDF

Leukocyte trafficking to the small and large intestines is tightly controlled to maintain intestinal immune homeostasis, mediate immune responses, and regulate inflammation. A wide array of chemoattractants, chemoattractant receptors, and adhesion molecules expressed by leukocytes, mucosal endothelium, epithelium, and stromal cells controls leukocyte recruitment and microenvironmental localization in intestine and in the gut-associated lymphoid tissues (GALTs). Naive lymphocytes traffic to the gut-draining mesenteric lymph nodes where they undergo antigen-induced activation and priming; these processes determine their memory/effector phenotypes and imprint them with the capacity to migrate via the lymph and blood to the intestines.

View Article and Find Full Text PDF

Systemic therapies for inflammatory bowel disease are associated with an increased risk of infections and malignancies. Topical therapies reduce systemic exposure, but can be difficult to retain or have limited proximal distribution. To mitigate these issues, we developed a thermo-sensitive platform, using a polymer-based system that is liquid at room temperature but turns into a viscous gel on reaching body temperature.

View Article and Find Full Text PDF

Lymphocyte recruitment maintains intestinal immune homeostasis but also contributes to inflammation. The orphan chemoattractant receptor GPR15 mediates regulatory T cell homing and immunosuppression in the mouse colon. We show that GPR15 is also expressed by mouse TH17 and TH1 effector cells and is required for colitis in a model that depends on the trafficking of these cells to the colon.

View Article and Find Full Text PDF

The experimental compound SU5416 went as far as Phase III clinical trials as an anticancer agent, putatively because of its activity as a VEGFR-2 inhibitor, but showed poor results. Here, we show that SU5416 is also an aryl hydrocarbon receptor (AHR) agonist with unique properties. Like TCDD, SU5416 favors induction of indoleamine 2,3 dioxygenase (IDO) in immunologically relevant populations such as dendritic cells in an AHR-dependent manner, leading to generation of regulatory T-cells in vitro.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is well-known for its role in mediating the toxic and adaptive responses to xenobiotic compounds. Recent studies also indicate that AHR ligands are endogenously produced and may be essential for normal development. Previously, we showed that the endogenous enzyme, aspartate aminotransferase (AST), generates the AHR proagonist, indole-3-pyruvic acid (I3P), by deamination of its substrate L-tryptophan.

View Article and Find Full Text PDF

Aerobic incubation of the tryptophan transamination/oxidation product indole-3-pyruvic acid (I3P) at pH 7.4 and 37 degrees C yielded products with activity as Ah receptor (AHR) agonists. The extracts were fractionated using HPLC and screened for AHR agonist activity.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor-associated protein-9 (ARA9) is a chaperone of the aryl hydrocarbon receptor (AHR). The AHR has been shown to play a late developmental role in the normal closure of a fetal hepatovascular shunt known as the ductus venosus (DV). Given that Ara9-null mice display early embryonic lethality, we generated a hypomorphic Ara9 allele (designated Ara9(fxneo)) that displays reduced ARA9 protein expression.

View Article and Find Full Text PDF

The primary design of this perspective is to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or "endogenous ligand" of the AHR. We present evidence supporting a developmental role for the AHR and propose mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development.

View Article and Find Full Text PDF