Glioblastoma multiforme (GBM), the most aggressive primary brain malignancy, presents considerable therapeutic challenges due to intrinsic treatment resistance and dismal clinical outcomes. Capitalizing on emerging insights into cuproptosis-mediated oncotherapy, we have developed a receptor-associated protein (RAP)-modified liposomal nanoplatform (RAP-LPs@ESCu) for the precise delivery of elesclomol-copper complexes (ESCu) and aimed to evaluate its therapeutic potential in triggering tumor-specific cuproptosis. RAP-LPs@ESCu were synthesized via thin-film hydration and characterized by transmission electron microscope (TEM) and dynamic light scatting.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Graphdiyne (GDY), the sole synthetic carbon allotrope with sp-hybridized carbon atoms, has been extensively researched that benefit from its pore structure, fully conjugated surfaces, wide band gaps, and more reactive C≡C bonds. In addition to the intrinsic features of GDY, engineering at the nanoscale, including metal/transition metal ion modification, chemical elemental doping, and other biomolecular modifications, endowed GDY with a broader functionality. This has led to its involvement in biomedical applications, including enzyme catalysis, molecular assays, targeted drug delivery, antitumor, and sensors.
View Article and Find Full Text PDFCancer Cell Int
February 2025
Background: Pancreatic adenocarcinoma (PDAC) is the most fatal malignant tumor that focuses on men and the elderly (40-85 years) and is aggressive. Its surgical resection rate is only 10-44%, and the rate of local recurrence in the retroperitoneum 1 year after surgery is as high as about 60%. The main reason for local recurrence in the majority of patients is that PDAC is perineural invasion (PNI) and the cancer cells infiltrate and grow along the peripancreatic nerve bundles.
View Article and Find Full Text PDFBackground: β-Amyloid (Aβ) fibrillation is critical for Aβ deposition and cytotoxicity during the progression of Alzheimer's disease (AD). Consequently, anti-Aβ monoclonal antibody drugs targeting Aβ oligomers and aggregation are considered potential therapeutic strategies for AD treatment. Similar to the working mechanisms of anti-Aβ monoclonal antibody drugs, our study identified osmundacetone (OAC), a small-molecule compound isolated from the traditional Chinese medicine Rhizoma Osmundae, as exerting anti-AD effects by targeting Aβ.
View Article and Find Full Text PDFGlycogen synthase kinase-3α/β (GSK3α/β) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/β inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/β. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/β content in a FOXO1-independent manner.
View Article and Find Full Text PDFACS Biomater Sci Eng
April 2024
Pharmacol Res
January 2024
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis.
View Article and Find Full Text PDFBackground And Purpose: Overexpression of astrocytic lactoferrin (Lf) was observed in the brain of Alzheimer's disease (AD) patients, whereas the role of astrocytic Lf in AD progression remains unexplored. In this study, we aimed to evaluate the effects of astrocytic Lf on AD progression.
Experimental Approach: Male APP/PS1 mice with astrocytes overexpressing human Lf were developed to evaluate the effects of astrocytic Lf on AD progression.
J Control Release
July 2023
Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system and has a poor prognosis. GBM cells are highly sensitive to ferroptosis and heat, suggesting thermotherapy-ferroptosis as a new strategy for GBM treatment. With its biocompatibility and photothermal conversion efficiency, graphdiyne (GDY) has become a high-profile nanomaterial.
View Article and Find Full Text PDFAlzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation.
View Article and Find Full Text PDFVitamin D deficiency and iron accumulation are prevalent in the brains of Alzheimer's disease (AD) patients, however, whether Vitamin D has a role in the regulations of iron metabolism in the condition of AD remains unknown. Our previous studies revealed that vitamin D deficiency promotes β-amyloid (Aβ) deposition in the APP/PS1 mouse brains, while supplemented with a specific agonist of vitamin D receptor (VDR), paricalcitol (PAL), significantly reduced Aβ production via promoting the lysosomal degradation of β-site APP cleavage enzyme 1 (BACE1). In this study, our data suggested that activation of VDR by PAL significantly reduced the iron accumulation in the cortex and hippocampus of APP/PS1 mice through downregulation of Transferrin receptor (TFR) by reducing iron-regulatory protein 2 (IRP2) expression.
View Article and Find Full Text PDF2D materials with heterolayered structures beyond graphene are explored. A theoretically predicted superconductor-topological insulator-normal metal heterolayered structure is realized experimentally. The generated hybrid structure HfTe3 /HfTe5 /Hf has potential applications in both quantum-spin Hall effect-based and Majorana-based devices.
View Article and Find Full Text PDF