Publications by authors named "Lida Du"

The cGAS-STING pathway, a crucial cytosolic DNA sensor, initiates innate immune responses by detecting microbial and aberrant self-DNA. This evolutionarily conserved axis plays pivotal roles in autoimmune disorders, sterile inflammation, and cellular senescence. While transient activation confers protective immunity, dysregulated cGAS-STING signaling drives pathogenesis in inflammatory and autoimmune diseases.

View Article and Find Full Text PDF

Salsolinol (SAL), an endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline, is a dopamine metabolite that has been implicated in the pathogenesis of Parkinson's disease (PD) due to its selective toxicity toward dopaminergic (DA) neurons. Experimental studies have demonstrated that SAL induces DA neuronal injury both in vitro and in vivo, thereby contributing to the PD pathogenesis. Given its specificity for nigral DA neurons, SAL serves as a more relevant model for studying PD-associated brain waste clearance and neurotoxicity, as it recapitulates the progressive nature of the disease.

View Article and Find Full Text PDF

Altered cerebral metabolism and blood-brain barrier (BBB) dysfunction are emerging as critical contributors to the preclinical phase of Alzheimer's disease (AD), underscoring their role in early pathogenesis. To identify sensitive biomarkers before irreversible neuronal loss and cognitive decline, we examined 5XFAD mice at 3 months of age by applying multiple advanced MRI techniques. Arterial spin tagging based MRI revealed increased BBB permeability and water extraction fraction, indicating compromised BBB integrity at the early stage of pathogenesis in 5×FAD mice.

View Article and Find Full Text PDF

The study investigated the impact of empty stadium matches and rule changes due to COVID-19 on the match performance in the Chinese Super League (CSL), including both technical and physical performance. Technical indicators considered were passing accuracy, number of passes, and number of challenges, while physical indicators included total distance, average speed, number of sprints, and sprint distance. Statistical significance was accepted at p < 0.

View Article and Find Full Text PDF

The acute phase of ischemic stroke is marked by a surge in matrix metalloproteinase-9 (MMP-9) activity. While integral to natural repair processes, MMP-9 exacerbates injury by breaking down the blood-brain barrier (BBB) and promoting edema and inflammation. MMP-9 is predominantly secreted by inflammatory cells such as neutrophils, macrophages and microglia soon after stroke onset.

View Article and Find Full Text PDF

Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that produces the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum-associated adaptor stimulator of interferon genes (STING) and activates the innate immune system to produce a type I interferon response. Besides sensing microbial DNA, cGAS can also be activated by self-DNA or endogenous DNA, including that derived from genotoxic extranuclear chromatin and mitochondrially released DNA, indicating that cGAS-STING is an important mechanism in sterile inflammatory responses, autoimmunity, and cellular senescence.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) shows a variety of motor subtypes like tremor-dominant and gait difficulty-dominant, but the specific causes of this diversity and effective personalized treatments are still unclear.* -
  • A new rat model simulating these PD subtypes was created, revealing that changes in neurofilament light chain levels, uric acid, and metabolites in the serum closely mirror those in human patients.* -
  • Through RNA sequencing, researchers identified altered gene expressions linked to PD subtypes and discovered 25 potential drug candidates, with baicalein proving particularly effective in treating the mixed subtype, suggesting tailored therapies may be feasible.*
View Article and Find Full Text PDF
Article Synopsis
  • Cellular senescence contributes to age-related diseases and tauopathies, making it a target for potential therapies.
  • This study explored the effectiveness of a senolytic therapy (dasatinib and quercetin) on a tauopathy mouse model, revealing improvements in brain health and cognitive function.
  • Non-invasive MRI techniques were used to monitor brain changes, showing that the treatment preserved blood-brain barrier integrity and reduced brain atrophy, suggesting that this therapy could be promising for clinical trials in tauopathy disorders.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder that remains incurable to date, seriously affecting the quality of life and health of those affected. One of the key neuropathological hallmarks of AD is the formation of amyloid-β (Aβ) plaques. Near-infrared (NIR) probes that possess a large Stokes shift show great potential for imaging of Aβ plaques in vivo and in vitro.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and mitophagy deficit was identified as the typical abnormality in early stage of AD. The neuroprotective effect of andrographolide (AGA) has been confirmed, anda acetylated derivative of AGA (3,14,19-triacetylandrographolide, ADA) was considered to have stronger efficacy.

Purpose: The current study aims to investigate the impact of ADA on cognitive ability in a sporadic AD model and explore its potential mechanism.

View Article and Find Full Text PDF

A new Cp*Rh(III)-catalyzed regioselective cyclization reaction of aromatic amides with allenes is reported. The use of allenyl derivatives bearing a directing-group assistant as a reaction promoter was the key to the success of this protocol. In this catalytic system, -(pivaloyloxy)benzamide substrates react with allenes Rh-σ-alkenyl intermediates, while -(pivaloyloxy) indol substrates react Rh-π-allyl intermediates.

View Article and Find Full Text PDF
Article Synopsis
  • Dopaminergic neurons in the substantia nigra are particularly prone to damage from rotenone, which contributes to the neuron loss seen in Parkinson's disease, and baicalein has potential neuroprotective effects.
  • In experiments with SH-SY5Y cells, baicalein was shown to enhance K-ATP channel activity and counteract the harmful effects of rotenone by dealing with reactive oxygen species and mitochondrial dysfunction.
  • The study indicates that baicalein binds strongly to the SUR1 protein, which is involved in K-ATP channels, suggesting it could be a valuable target for preventing neuron degeneration in Parkinson's disease.
View Article and Find Full Text PDF

Both neuroinflammation and iron accumulation play roles in the pathogenesis of Parkinson's disease (PD). However, whether inflammation induces iron dyshomeostasis in dopaminergic neurons at an early stage of PD, at which no quantifiable dopaminergic neuron loss can be observed, is still unknown. As for the inflammation mediators, although several cytokines have been reported to increase in PD, the functions of these cytokines in the SN are double-edged and controversial.

View Article and Find Full Text PDF

Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by elevated motor behaviors and dream enactments in REM sleep, often preceding the diagnosis of Parkinson's disease (PD). As RBD could serve as a biomarker for early PD developments, pharmacological interventions targeting α-synuclein aggregation triggered RBD could be applied toward early PD progression. However, robust therapeutic guidelines toward PD-induced RBD are lacking, owing in part to a historical paucity of effective treatments and trials.

View Article and Find Full Text PDF

Stress may trigger sleep disorders and are also risk factors for depression. The study explored the melatonin-related mechanisms of stress-associated sleep disorders on a mouse model of chronic stress by exploring the alteration in sleep architecture, melatonin, and related small molecule levels, transcription and expression of melatonin-related genes as well as proteins. Mice undergoing chronic restraint stress modeling for 28 days showed body weight loss and reduced locomotor activity.

View Article and Find Full Text PDF

At present, the preventive effect of ischemic stroke is not ideal, and the preventive drugs are limited. Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of cardiovascular diseases for many years. Phenolic Acids extracted from danshen, which showed multiple biological activities, have been developed as an injection for the treatment of ischemic stroke.

View Article and Find Full Text PDF

Salvianolic acid A (SAA) is a traditional Chinese medicine that has a good therapeutic effect on cardiovascular disease. However, the underlying mechanisms by which SAA improves mitochondrial respiration and cardiac function in diabetic cardiomyopathy (DCM) remain unknown. This study aims to elucidate whether SAA had any cardiovascular protection on the pathophysiology of DCM and explored the potential mechanisms.

View Article and Find Full Text PDF

Tenoxicam (TNX) is a new non-steroidal anti-inflammatory drug that shows a superior anti-inflammatory effect and has the advantages of a long half-life period, a fast onset of action, a small dose, complete metabolism, and good tolerance. Some compounds often have tautomerism, and different tautomers exist in different crystalline forms. TNX is such a compound and has three tautomers.

View Article and Find Full Text PDF

The purpose of this study was to explore how Chinese Football Super League (CSL) referees' physical performance and decision-making distance varied according to match type and match halves. Data from 107 matches played by top-4 ranked and bottom-4 ranked teams during 2018-2019 CSL seasons were collected. Level of matches was classified into three groups: (a) upper-ranked (top-4) teams against top-4 teams, (b) top-4 teams against lower-ranked teams (bottom-4), and (c) bottom-4 teams against bottom-4 teams.

View Article and Find Full Text PDF

Background: Clinical observations reveal that rapid eye movement (REM) sleep behavior disorder (RBD) often develops prior to alpha-synucleinopathies including Parkinson's disease (PD). However, a causal relationship between alpha-synucleinopathy and Parkinsonian neurodegeneration has not been delineated.

Methods: Rats were chronically treated with rotenone and EEG and EMG signals were recorded for analysis of sleep behavior, assisted by video recording of body movements.

View Article and Find Full Text PDF

At present, the prevention and control of cardiovascular diseases (CAVDs) has made initial advancements, although the prevention and control of cerebrovascular diseases (CEVDs) has not yet achieved the desired progress. In this paper, we review the prevention and control of CEVDs and CAVDs, and analyze the differences in prevention effects, and the pathological and physiological structures pertaining to CEVDs and CAVDs. Combined with the different effects of low-dose aspirin in the primary prevention of CEVDs and CAVDs by meta-analysis, aspirin plays a more important role in the primary prevention of CAVDs than CEVDs.

View Article and Find Full Text PDF

Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors.

View Article and Find Full Text PDF

Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified.

View Article and Find Full Text PDF