Publications by authors named "Liangyuan Qi"

In modern architecture, windows are increasingly employed as curtain wall structures, playing a critical approach in regulating indoor environments to reduce building energy consumption. Meanwhile, the demands for transparency and flame retardancy present significant challenges in guaranteeing people's privacy and safety. In response, a two-layer "smart window" is designed to achieve thermal management, privacy protection, and fire safety, through leveraging the photo-thermal effect of MXene nanosheets, the phase change characteristic of fatty alcohol, and the flame-retardant effect of tetrabromobisphenol A (TBBPA).

View Article and Find Full Text PDF
Article Synopsis
  • The combustion of thermoplastic polyurethane (TPU) produces harmful smoke and toxic gases that threaten human safety.
  • A new method using rare earth Mn-based composite catalysts blended with TPU has been developed to reduce smoke and gas emissions during combustion.
  • The addition of these catalysts resulted in significant decreases in smoke density and carbon monoxide production, while also improving flame retardancy and overall safety of TPU materials.
View Article and Find Full Text PDF

Enhancing the fire safety of epoxy resins (EPs) typically requires a significant amount of flame retardants, which often results in considerable degradation of their mechanical properties. To address this issue, a novel flame retardant known as PDCP@DPA@MXene was synthesized and integrated into EP to achieve notable improvements in flame retardancy, smoke suppression, and mechanical strength. By incorporating 1.

View Article and Find Full Text PDF

Despite the wide applications in clothing, furniture, and transportation, the well-known "scaffolding effect" in polyester-cotton fabric has caused significant fire hazards compared to sole polyester or cotton fabrics. Therefore, it is of practical significance to endow polyester-cotton fabric with excellent fire safety. In this work, an organic-inorganic composite coating comprising nitrogen-phosphorus-silicon-containing flame retardant and silver nanoparticle-loaded halloysite nanotubes (Ag@HNTs) was designed and prepared to improve the fire safety of polyester-cotton fabrics.

View Article and Find Full Text PDF

This work aims at revealing and optimizing the mechanism, to promote the design of phosphorus-based flame retardants (PFRs) for controlling the spread of fire risk caused by the continuous spread of polymers. Herein, we synthesized about 10 nm TiO grown in situ on the surface of BP through a simple hydrothermal procedure to introduce it into epoxy (EP/BP-TiO). In the first place, EP/BP-TiO2.

View Article and Find Full Text PDF

In order to meet the rapidly growing demand of multi-functional fabric, a super-hydrophobic flame retardant coating for cotton fabric with superior washability and abrasion resistance was prepared. Flame retardant finishing agent P, P-diphenyl-N-(3-(trithoxysilyl) propyl) phospinic amide (DPTES) and hydrophobic finishing agent polydimethylsiloxane @silicon dioxide (PDMS@SiO) were fixed on the surface of cotton fabric by a simple sol-gel technology in combination with convenient brush-coating process. The coated cotton fabric was capable of self-extinguishing a flame, and the Limiting Oxygen Index (LOI) increased from 18.

View Article and Find Full Text PDF