Publications by authors named "Lenka Grycova"

Recent research has shown that mtDNA-deficient cancer cells (ρ cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1) mice markedly delayed tumor formation after grafting ρ cancer cells.

View Article and Find Full Text PDF

Microtubules (MTs) are dynamically unstable polar biopolymers switching between periods of polymerization and depolymerization, with the switch from the polymerization to the depolymerization phase termed catastrophe and the reverse transition termed rescue. In presence of MT-crosslinking proteins, MTs form parallel or anti-parallel overlaps and self-assemble reversibly into complex networks, such as the mitotic spindle. Differential regulation of MT dynamics in parallel and anti-parallel overlaps is critical for the self-assembly of these networks.

View Article and Find Full Text PDF

Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive.

View Article and Find Full Text PDF

Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 ion channel (TRPV1) belongs to the TRP family of ion channels. These channels play a role in many important biological processes such as thermosensation and pain transduction. The TRPV1 channel was reported to be also involved in nociception.

View Article and Find Full Text PDF

The transient receptor potential (TRP) protein superfamily consists of seven major groups, among them the "canonical TRP" family. The TRPC proteins are calcium-permeable nonselective cation channels activated after the emptying of intracellular calcium stores and appear to be gated by various types of messengers. The TRPC6 channel has been shown to be expressed in various tissues and cells, where it modulates the calcium level in response to external signals.

View Article and Find Full Text PDF

TRPV1 is a nonselective cation channel that integrates wide range of painful stimuli. It has been shown that its activity could be modulated by intracellular ligands PIP2 or calmodulin (CaM). The detailed localization and description of PIP2 interaction sites remain unclear.

View Article and Find Full Text PDF

TRPM3 has been reported to play an important role in Ca(2+) homeostasis, but its gating mechanisms and regulation via Ca(2+) are unknown. Ca(2+) binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding.

View Article and Find Full Text PDF

Transient receptor potential melastatin 3 ion channel (TRPM3) belongs to the TRP family of cation-permeable ion channels involved in many important biological functions such as pain transduction, thermosensation, and mechanoregulation. The channel was reported to play an important role in Ca(2+) homeostasis, but its gating mechanisms, functions, and regulation are still under research. Utilizing biophysical and biochemical methods, we characterized two independent domains, Ala-35-Lys-124 and His-291-Gly-382, on the TRPM3 N terminus, responsible for interactions with the Ca(2+)-binding proteins calmodulin (CaM) and S100A1.

View Article and Find Full Text PDF

The transient receptor potential channels TRPV2 and TRPV5 belong to the vanilloid TRP subfamily. TRPV2 is highly similar to TRPV1 and shares many common properties with it. TRPV5 (and also its homolog TRPV6) is a rather distinct member of the TRPV subfamily.

View Article and Find Full Text PDF

The transient receptor potential channel TRPC6 is a non-selective cation channel which modulates the calcium level in eukaryotic cells (including sensory receptor cells) in response to external signals. Calmodulin (CaM) is a ubiquitously expressed Ca(2+) binding protein that is an important mediator of Ca(2+)-dependent regulation of the TRPC6 channel. One CaM binding site was identified within the C-tail of TRPC6.

View Article and Find Full Text PDF

A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding.

View Article and Find Full Text PDF

Malaria is one of the most serious global health problems. Isolating new therapeutic agents with potential antimalarial activity from natural sources or preparing such agents either semisynthetically or synthetically is one strategy for solving the problem of resistance constantly evolving to the drugs currently in use. For alkaloids, the acid-base dissociation constant, pK(a), is an important characteristic, thought to be associated with biological activity.

View Article and Find Full Text PDF

Conformational changes of the Na(+)/K(+)-ATPase isolated large cytoplasmic segment connecting transmembrane helices M4 and M5 (C45) induced by the interaction with enzyme ligands (i.e. Mg(2+) and/or ATP) were investigated by means of the intrinsic tryptophan fluorescence measurement and molecular dynamic simulations.

View Article and Find Full Text PDF

Adducts of the quaternary protoberberine alkaloids (QPA) berberine, palmatine, and coptisine were prepared with nucleophiles derived from pyrrole, pyrazole, imidazole, and 1,2,4-triazole. The products, 8-substituted 7,8-dihydroprotoberberines, were identified by mass spectrometry and 1D and 2D NMR spectroscopy, including (1)H--(15)N shift correlations at natural abundance. In addition, two adducts of QPA with chloroform and methanethiolate were characterized by using NMR data.

View Article and Find Full Text PDF

Calmodulin (CaM) is known to play an important role in the regulation of TRP channels activity. Although it has been reported that CaM binds to the C-terminus of TRPV1 (TRPV1-CT), no classic CaM-binding motif was found in this region. In this work, we explored this unusual TRPV1 CaM-binding motif in detail and found that five residues from a putative CaM-binding motif are important for TRPV1-CT's binding to CaM, with arginine R785 being the most essential residue.

View Article and Find Full Text PDF

Melatonin functions as an essential regulator of various physiological processes in all vertebrate species. In mammals, two G protein-coupled melatonin receptors (GPCR) mediate some melatonin's actions: MT1 and MT2. Transmembrane domains (TM) of most GPCRs contain a set of highly conserved proline residues that presumably play important structural and functional roles.

View Article and Find Full Text PDF

Transient receptor potential channel vanilloid receptor subunit 1 (TRPV1) is a thermosensitive cation channel activated by noxious heat as well as a wide range of chemical stimuli. Although ATP by itself does not directly activate TRPV1, it was shown that intracellular ATP increases its activity by directly interacting with the Walker A motif residing on the C-terminus of TRPV1. In order to identify the amino acid residues that are essential for the binding of ATP to the TRPV1 channel, we performed the following point mutations of the Walker A motif: P732A, D733A, G734A, K735A, D736A, and D737A.

View Article and Find Full Text PDF

Five geranylflavonoids, one prenylated flavonoid, and a simple flavanone were isolated from an ethanolic extract of Paulownia tomentosa fruit. Tomentodiplacol (1), 3'-O-methyl-5'-methoxydiplacol (2), 6-isopentenyl-3'-O-methyltaxifolin (3), and dihydrotricin (4) are reported from a natural source for the first time and 3'-O-methyldiplacone (6) for the first time from the genus Paulownia. The structures of the compounds were determined by mass spectrometry, including HRMS, and by 1D and 2D NMR spectroscopy.

View Article and Find Full Text PDF

This contribution reviews some general aspects of the quaternary iminium protoberberine alkaloids. The alkaloids represent a very extensive group of secondary metabolites with diverse structures, distribution in nature, and biological effects. The quaternary protoberberine alkaloids (QPA), derived from the 5,6-dihydrodibenzo[a,g]quinolizinium system, belong to a large class of isoquinoline alkaloids.

View Article and Find Full Text PDF