Publications by authors named "Laurent Sachs"

The most emblematic metamorphoses in the animal kingdom remain those of the caterpillar into a butterfly and the tadpole into a frog. However, some other vertebrates also present, at one or more steps of their biological cycle, drastic changes in their morphology, physiology and behavior, allowing them to adapt to a new environment (habitat) and way of life, and thus considered as metamorphoses. This is the case within fish, for some representatives of teleosts (the largest group among vertebrates) and of cyclostomes (the most ancient group among vertebrates).

View Article and Find Full Text PDF

Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system.

View Article and Find Full Text PDF

There are many concerns about the impacts of Endocrine-Disrupting Chemicals on both wildlife and human populations. A plethora of chemicals have been shown to interfere with the Hypothalamic-Pituitary-Thyroid (HPT) axis in vertebrates. Disruption of the HPT axis is one of main endocrine criteria considered for the regulation of chemicals, along with the estrogen axis, androgen axis and steroidogenesis (EATS).

View Article and Find Full Text PDF
Article Synopsis
  • - Lithium is widely used to treat psychiatric disorders and in industrial applications, but recent studies highlight its potential to disrupt the thyroid hormone system, which is crucial for neurodevelopment.
  • - Research reviewed from PubMed and Scopus focused on human and animal health outcomes after lithium exposure, showing that lithium can disrupt thyroid function, especially at therapeutic doses.
  • - The findings underline the need for awareness of lithium's effects as its use in new technologies rises, emphasizing the importance of studying its environmental impact on thyroid health and neurodevelopment in growing organisms.
View Article and Find Full Text PDF

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals.

View Article and Find Full Text PDF

Thyroid hormones are involved in many biological processes such as neurogenesis, metabolism, and development. However, compounds called endocrine disruptors can alter thyroid hormone signaling and induce unwanted effects on human and ecosystems health. Regulatory tests have been developed to detect these compounds but need to be significantly improved by proposing novel endpoints and key events.

View Article and Find Full Text PDF

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.

View Article and Find Full Text PDF

Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka () transgenic line.

View Article and Find Full Text PDF

Thyroid hormones (TH) and glucocorticoids (GC) are involved in numerous developmental and physiological processes. The effects of individual hormones are well documented, but little is known about the joint actions of the two hormones. To decipher the crosstalk between these two hormonal pathways, we conducted a transcriptional analysis of genes regulated by TH, GC, or both hormones together in liver of tadpoles using RNA-Seq.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity.

View Article and Find Full Text PDF

In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic-pituitary-thyroid axis controls thyroid hormone production and release, whereas the hypothalamic-pituitary-adrenal/interrenal axis regulates the production and release of corticosteroids.

View Article and Find Full Text PDF

Background: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during metamorphosis.

Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin.

View Article and Find Full Text PDF
Article Synopsis
  • * The mineralocorticoid receptor, present in fish, evolved to work with aldosterone, which first appeared in lungfish and amphibians, marking a key adaptation for life on land.
  • * This review explores the mineralocorticoid signaling pathway, detailing aldosterone's role in adrenal gland secretion and its effects in the kidneys during fetal and neonatal development, within an evolutionary context.
View Article and Find Full Text PDF

Amphibians display very diverse life cycles and development can be direct, where it occurs in ovo and a juvenile hatches directly, or biphasic, where an aquatic larva hatches and later undergoes metamorphosis followed by sexual maturation. In both cases, metamorphosis, corresponds to the post embryonic transition (PETr). A third strategy, only found in Urodeles, is more complex as larvae reach sexual maturity before metamorphosis, which can become accessory.

View Article and Find Full Text PDF

ERGO (EndocRine Guideline Optimization) is the acronym of a European Union-funded research and innovation action, that aims to break down the wall between mammalian and non-mammalian vertebrate regulatory testing of endocrine disruptors (EDs), by identifying, developing and aligning thyroid-related biomarkers and endpoints (B/E) for the linkage of effects between vertebrate classes. To achieve this, an adverse outcome pathway (AOP) network covering various modes of thyroid hormone disruption (THD) in multiple vertebrate classes will be developed. The AOP development will be based on existing and new data from in vitro and in vivo experiments with fish, amphibians and mammals, using a battery of different THDs.

View Article and Find Full Text PDF

Methylation of cytosine residues in DNA influences chromatin structure and gene transcription, and its regulation is crucial for brain development. There is mounting evidence that DNA methylation can be modulated by hormone signaling. We analyzed genome-wide changes in DNA methylation and their relationship to gene regulation in the brain of Xenopus tadpoles during metamorphosis, a thyroid hormone-dependent developmental process.

View Article and Find Full Text PDF

Thyroid hormone (TH) is the most important hormone in frog metamorphosis, a developmental process which will not occur in the absence of TH but can be induced precociously by exogenous TH. However, such treatments including TH treatments often do not replicate the events of natural metamorphosis in many organs, including lung, brain, blood, intestine, pancreas, tail, and skin. A potential explanation for the discrepancy between natural and TH-induced metamorphosis is the involvement of glucocorticoids (GCs).

View Article and Find Full Text PDF

Amphibian post-embryonic development and Thyroid Hormones (TH) signaling are deeply and intimately connected. In anuran amphibians, TH induce the spectacular and complex process known as metamorphosis. In paedomorphic salamanders, at similar development time, raising levels of TH fail to induce proper metamorphosis, as many "larval" tissues (e.

View Article and Find Full Text PDF

Proper gene expression involves communication between the regulatory elements and promoters of genes. Today, chromosome conformation capture (3C)-based methods efficiently probe chromosome folding in the nucleus and thus provide a molecular description of physical proximity through DNA looping between enhancer(s) and their target promoter(s). One such method, chromatin interaction analysis using paired-end-tag (ChIA-PET) sequencing is a powerful high-throughput method for detection of genome-wide chromatin interactions.

View Article and Find Full Text PDF

Proper gene expression involves communication between the regulatory elements and promoters of genes. Because regulatory elements can be located over a large range of genomic distances (from as close as a few hundred bp to as much as several Mb away), contact and communication between regulators and the core transcriptional machinery at promoters are mediated through DNA looping. Today, chromosome conformation capture (3C)-based methods efficiently probe chromosome folding in the nucleus and thus provide a molecular description of physical proximity between enhancer(s) and their target promoter(s).

View Article and Find Full Text PDF