Drug-resistant bacteria pose an urgent global health threat, necessitating the development of antibacterial compounds with novel modes of action. Protein biosynthesis accounts for up to half of the energy expenditure of bacterial cells, and consequently inhibiting the efficiency or fidelity of the bacterial ribosome is a major target of existing antibiotics. Here, we describe an alternative mode of action that affects the same process: allowing translation to proceed but causing co-translational aggregation of the nascent peptidic chain.
View Article and Find Full Text PDFRecalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.
View Article and Find Full Text PDFBackground: Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs.
View Article and Find Full Text PDFCystinosis is an autosomal recessive lysosomal storage disorder, caused by mutations in the gene, resulting in an absent or altered cystinosin (CTNS) protein. Cystinosin exports cystine out of the lysosome, with a malfunction resulting in cystine accumulation and a defect in other cystinosin-mediated pathways. Cystinosis is a systemic disease, but the kidneys are the first and most severely affected organs.
View Article and Find Full Text PDFThere is an arms race between beta-lactam antibiotics development and co-evolving beta-lactamases, which provide resistance by breaking down beta-lactam rings. We have observed that certain beta-lactamases tend to aggregate, which persists throughout their evolution under the selective pressure of antibiotics on their active sites. Interestingly, we find that existing beta-lactamase active site inhibitors can act as molecular chaperones, promoting the proper folding of these resistance factors.
View Article and Find Full Text PDFFunctional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions.
View Article and Find Full Text PDFThe overconsumption and inappropriate use of antibiotics is escalating antibiotic resistance development, which is now one of the 10 top threats to global health. Introducing antibiotics with a novel mode of action into clinical use is urgently needed to address this issue. Deliberately inducing aggregation of target proteins and disrupting protein homeostasis in bacteria via amyloidogenic peptides, also called Pept-ins (from peptide interferors), can be lethal to bacteria and shows considerable promise as a novel antibiotic strategy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Amyloid-like aggregation of proteins is induced by short amyloidogenic sequence segments within a specific protein sequence resulting in self-assembly into β-sheets. We recently validated a technology platform in which synthetic amyloid peptides ("Pept-ins") containing a specific aggregation-prone region (APR) are used to induce specific functional knockdown of the target protein from which the APR was derived, including bacterial, viral, and mammalian cell proteins. In this work, we investigated if Pept-ins can be used as vector probes for Positron Emission Tomography (PET) imaging of intracellular targets.
View Article and Find Full Text PDFDecades of research into bacterial persistence has been unable to fully characterize this antibiotic-tolerant phenotype, thereby hampering the development of therapies effective against chronic infections. Although some active persister mechanisms have been identified, the prevailing view is that cells become persistent because they enter a dormant state. We therefore characterized starvation-induced dormancy in Escherichia coli.
View Article and Find Full Text PDFDespite our extensive knowledge of the genetic regulation of heat shock proteins (HSPs), the evolutionary routes that allow bacteria to adaptively tune their HSP levels and corresponding proteostatic robustness have been explored less. In this report, directed evolution experiments using the Escherichia coli model system unexpectedly revealed that seemingly random single mutations in its gene can confer significant heat resistance. Closer examination, however, indicated that these mutations create folding-deficient and aggregation-prone TnaA variants that in turn can endogenously and preemptively trigger HSP expression to cause heat resistance.
View Article and Find Full Text PDFCells have evolved a complex molecular network, collectively called the protein homeostasis (proteostasis) network, to produce and maintain proteins in the appropriate conformation, concentration and subcellular localization. Loss of proteostasis leads to a reduction in cell viability, which occurs to some degree during healthy ageing, but is also the root cause of a group of diverse human pathologies. The accumulation of proteins in aberrant conformations and their aggregation into specific beta-rich assemblies are particularly detrimental to cell viability and challenging to the protein homeostasis network.
View Article and Find Full Text PDFAggregation can be selectively induced by aggregation-prone regions (APRs) contained in the target proteins. Aggregation-inducing antimicrobial peptides (Pept-ins) contain sequences homologous to APRs of target proteins and exert their bactericidal effect by causing aggregation of a large number of proteins. To better understand the mechanism of action of Pept-ins and the resistance mechanisms, we analyzed the phenotypic, lipidomic, and transcriptomic as well as genotypic changes in laboratory-derived Pept-in-resistant E.
View Article and Find Full Text PDFHuman amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein.
View Article and Find Full Text PDFThere is evidence that pathogenic bacteria can adapt to antiseptics upon repeated exposure. More alarming is the concomitant increase in antibiotic resistance that has been described for some pathogens. Unfortunately, effects of adaptation and cross-adaptation are hardly known for oral pathogens, which are very frequently exposed to antiseptics.
View Article and Find Full Text PDFObjectives: The opportunistic pathogen Staphylococcus epidermidis is progressively involved in device-related infections. Since these infections involve biofilm formation, antibiotics are not effective. Conversely, a vaccine can be advantageous to prevent these infections.
View Article and Find Full Text PDFAggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs are unique within a proteome, but that a small minority of APRs occur in many proteins. When aggregation is nucleated in bacteria by such frequently occurring APRs, it leads to massive and lethal inclusion body formation containing a large number of proteins.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is an inhibitor of megakaryopoiesis and platelet function. Recently, PACAP deficiency was observed in children with nephrotic syndrome (NS), associated with increased platelet count and aggregability and increased risk of thrombosis. To further study PACAP deficiency in NS, we used transgenic Tg(cd41:EGFP) zebrafish with GFP-labeled thrombocytes.
View Article and Find Full Text PDFThe human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction.
View Article and Find Full Text PDFScience
November 2016
Most human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction.
View Article and Find Full Text PDFInfect Genet Evol
September 2016
Staphylococcus epidermidis is one of the major concerns with respect to hospital-acquired infections. Therefore, a rapid and easy method to identify at species level S. epidermidis isolates out of a broad range of bacteria is necessary.
View Article and Find Full Text PDFStaphylococcus epidermidis is the most common cause of device-associated infections. It has been shown that active and passive immunization in an animal model against protein SesC significantly reduces S. epidermidis biofilm-associated infections.
View Article and Find Full Text PDFThe increased use of medical implants has resulted in a concomitant rise in device-related infections. The majority of these infections are caused by Staphylococcus epidermidis biofilms. Immunoprophylaxis and immunotherapy targeting in vivo-expressed, biofilm-associated, bacterial cell surface-exposed proteins are promising new approaches to prevent and treat biofilm-related infections, respectively.
View Article and Find Full Text PDF