Publications by authors named "L Darryl Quarles"

Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high-throughput structure-based computational screening using ensemble docking for small-molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein.

View Article and Find Full Text PDF

Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. A critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies are in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high throughput structure-based computational screening using ensemble docking for small molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein.

View Article and Find Full Text PDF
Article Synopsis
  • GPRC6A is a G-protein coupled receptor that plays a role in regulating energy metabolism and sex hormone production, activated by various ligands like cations and testosterone.
  • A structural model was created using Alphafold2 to identify key binding sites for ligands, including an orthosteric site and two allosteric modulator sites.
  • Research shows that Ocn peptides function as positive allosteric modulators by binding to a unique site in GPRC6A's Venus fly trap domain, while certain mutations disrupt this activation, enhancing understanding of ligand-receptor interactions.
View Article and Find Full Text PDF

Understanding the mechanism of metformin actions in treating type 2 diabetes is limited by an incomplete knowledge of the specific protein targets mediating its metabolic effects. Metformin has structural similarities to L-Arginine (2-amino-5-guanidinopentanoic acid), which is a ligand for GPRC6A, a Family C G-protein coupled receptor that regulates energy metabolism. Ligand activation of GPRC6A results in lowering of blood glucose and other metabolic changes resembling the therapeutic effect of metformin.

View Article and Find Full Text PDF

Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, ) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing.

View Article and Find Full Text PDF