Typical AR methods have generic problems such as visual mismatching, incorrect occlusions, and limited augmentation due to the inability to estimate depth from AR images and attaching the AR markers onto physical objects, which prevents the industrial worker from conducting manufacturing tasks effectively. This paper proposes a hybrid approach to industrial AR for complementing existing AR methods using deep learning-based facility segmentation and depth prediction without AR markers and a depth camera. First, the outlines of physical objects are extracted by applying a deep learning-based instance segmentation method to the RGB image acquired from the AR camera.
View Article and Find Full Text PDFThe dynamics of nanopore formation in metal membranes using the highly focused and high energy electron beams (e-beams) of transmission electron microscopy instruments was investigated. Various metals such as Al, Ti, Cr, Cu, and Au were selected to investigate the effect of the atomic mass of the metal on nanopore drilling, namely, elastic versus inelastic scattering. We demonstrated that the effect of elastic scattering (pore formation by sputtering) decreased as the atomic mass of the metal increased.
View Article and Find Full Text PDFNanoscale
January 2019
Here, we investigated the translocation of biomolecules, such as DNA and protein, through a sequentially polymerized polyurea nanopore, with a thin (<10 nm) polymer membrane of uniform thickness. The polyurea membrane was synthesized by molecular layer deposition using p-phenylenediisocyanate (PDI) and p-phenylenediamine (PDA) as sequential precursors. The membrane exhibited a hydrophobic surface with a highly negative surface charge density (-51 mC m-2 at pH 8).
View Article and Find Full Text PDFThe solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained.
View Article and Find Full Text PDFWe report a novel low-noise nanopore device employing a polymer substrate. The Si substrate of a fabricated Si-substrate-based silicon nitride (Si3N4) membrane was replaced with a polymer substrate. As such, laser machining was used to make a micro-size hole through the polyimide (PI) substrate, and a thin Si3N4 membrane was then transferred onto the PI substrate.
View Article and Find Full Text PDFWe present a fabrication scheme for a solid-state ZnO nanopore membrane directly deposited on top of a quartz substrate by atomic layer deposition (ALD) and investigate the characteristics of DNA translocation through the nanopores. We chose a ZnO membrane owing to its high isoelectric point (∼9.5) as well as its chemical and mechanical stability.
View Article and Find Full Text PDFWe have fabricated highly sensitive and low noise solid-state nanopores with multiple layers of boron nitride (BN) membranes transferred onto a pyrex substrate. Both the dielectric and flicker noise of the device, which have been described as one of the bottlenecks to making highly sensitive 2-D membrane nanopore devices, have been reduced as follows. Firstly, a pyrex substrate with a low dielectric constant (εr = 4.
View Article and Find Full Text PDFA solid-state nanopore platform with a low noise level and sufficient sensitivity to discriminate single-strand DNA (ssDNA) homopolymers of poly-A40 and poly-T40 using ionic current blockade sensing is proposed and demonstrated. The key features of this platform are (a) highly insulating dielectric substrates that are used to mitigate the effect of parasitic capacitance elements, which decrease the ionic current RMS noise level to sub-10 pA and (b) ultra-thin silicon nitride membranes with a physical thickness of 5 nm (an effective thickness of 2.4 nm estimated from the ionic current) are used to maximize the signal-to-noise ratio and the spatial depth resolution.
View Article and Find Full Text PDFIonic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiNx membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer.
View Article and Find Full Text PDF