Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where these motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to find sequence motifs in metagenomic datasets to engineer phage activity.
View Article and Find Full Text PDFVisible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW).
View Article and Find Full Text PDFThe sulfur-containing amino acid cysteine is abundant in the environment, including in freshwater lakes. Biological cysteine degradation can result in hydrogen sulfide (HS), a toxic and ecologically relevant compound that is a central player in biogeochemical cycling in aquatic environments. Here, we investigated the ecological significance of cysteine in oxic freshwater, using isolated cultures, controlled experiments, and multiomics.
View Article and Find Full Text PDFIn globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes can disperse over thousands of kilometers and their characteristics are determined by geochemical sources from vents, e.g.
View Article and Find Full Text PDFBacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where such motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to discover sequence motifs in metagenomic datasets that can be used to engineer phage activity.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2022
Stroke leads to gut bacterial dysbiosis that impacts the post-stroke outcome. The gut microbiome also contains a high abundance of viruses which might play a crucial role in disease progression and recovery by modulating the metabolism of both host and host's gut bacteria. We presently analyzed the virome composition (viruses and phages) by shotgun metagenomics in the fecal samples obtained at 1 day of reperfusion following transient focal ischemia in adult mice.
View Article and Find Full Text PDFGenome binning has been essential for characterization of bacteria, archaea, and even eukaryotes from metagenomes. Yet, few approaches exist for viruses. We developed vRhyme, a fast and precise software for construction of viral metagenome-assembled genomes (vMAGs).
View Article and Find Full Text PDFTemperate phages (prophages) are ubiquitous in nature and persist as dormant components of host cells (lysogenic stage) before activating and lysing the host (lytic stage). Actively replicating prophages contribute to central community processes, such as enabling bacterial virulence, manipulating biogeochemical cycling, and driving microbial community diversification. Recent advances in sequencing technology have allowed for the identification and characterization of diverse phages, yet no approaches currently exist for identifying if a prophage has activated.
View Article and Find Full Text PDFBackground: Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling.
View Article and Find Full Text PDFViruses are diverse biological entities that influence all life. Even with limited genome sizes, viruses can manipulate, drive, steal from, and kill their hosts. The field of virus genomics, using sequencing data to understand viral capabilities, has seen significant innovations in recent years.
View Article and Find Full Text PDFViruses influence the fate of nutrients and human health by killing microorganisms and altering metabolic processes. Organosulfur metabolism and biologically derived hydrogen sulfide play dynamic roles in manifestation of diseases, infrastructure degradation, and essential biological processes. Although microbial organosulfur metabolism is well studied, the role of viruses in organosulfur metabolism is unknown.
View Article and Find Full Text PDFMicrobial sulfur metabolism contributes to biogeochemical cycling on global scales. Sulfur metabolizing microbes are infected by phages that can encode auxiliary metabolic genes (AMGs) to alter sulfur metabolism within host cells but remain poorly characterized. Here we identified 191 phages derived from twelve environments that encoded 227 AMGs for oxidation of sulfur and thiosulfate (dsrA, dsrC/tusE, soxC, soxD and soxYZ).
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal microbiota, yet the association of microbes with CCP serology and their contribution to RA is unclear. We describe intestinal phage communities of individuals at risk for developing RA, with or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA.
View Article and Find Full Text PDFBackground: Viruses are central to microbial community structure in all environments. The ability to generate large metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to tease apart complex microbiome dynamics, but these analyses are currently limited by the tools available for analyses of viral genomes and assessing their metabolic impacts on microbiomes.
Design: Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein similarity approach that is not reliant on sequence features for automated recovery and annotation of viruses, determination of genome quality and completeness, and characterization of viral community function from metagenomic assemblies.
Proteobacteria constitute one of the most diverse and abundant groups of microbes on Earth. In productive marine environments like deep-sea hydrothermal systems, Proteobacteria are implicated in autotrophy coupled to sulfur, methane, and hydrogen oxidation, sulfate reduction, and denitrification. Beyond chemoautotrophy, little is known about the ecological significance of poorly studied Proteobacteria lineages that are globally distributed and active in hydrothermal systems.
View Article and Find Full Text PDFArboviruses are a large group of viruses that are transmitted by arthropods including ticks and mosquitoes. The global diversity of arboviruses is unknown; however, theoretical studies have estimated that over 2,000 mosquito-borne flaviviruses may exist. An increasing number of flaviviruses can only infect insect cells.
View Article and Find Full Text PDF