Publications by authors named "Krishnamurthy Subramanian"

In the pregenomic era, scientists were puzzled by the observation that haploid genome size (the C-value) did not correlate well with organismal complexity. This phenomenon, called the "C-value paradox," is mostly explained by the fact that protein-coding genes occupy only a small fraction of eukaryotic genomes. When the first genome sequences became available, scientists were even more surprised by the fact that the number of genes (G-value) was also a poor predictor of complexity, which gave rise to the "G-value paradox.

View Article and Find Full Text PDF

We experimentally demonstrate wavelength-independent couplers based on an asymmetric Mach-Zehnder interferometer on a monolithic silicon-photonics platform in a state-of-the-art CMOS foundry. The devices are also designed to exhibit fabrication tolerant performance for arbitrary splitting ratios. We have developed a semi-analytical model to optimize the device response and the reliability of the model is benchmarked against 3D-FDTD simulations.

View Article and Find Full Text PDF

Bat genomes are characterized by a diverse transposable element (TE) repertoire. In particular, the genomes of members of the family Vespertilionidae contain both active retrotransposons and active DNA transposons. Each TE type is characterized by a distinct pattern of accumulation over the past ~40 million years.

View Article and Find Full Text PDF

Analyses in a number of organisms have shown that duplicated genes are less likely to be essential than singletons. This implies that genes can often compensate for the loss of their paralogs. However, it is unclear why the loss of some duplicates can be compensated by their paralogs, whereas the loss of other duplicates cannot.

View Article and Find Full Text PDF

We present the Codon Statistics Database, an online database that contains codon usage statistics for all the species with reference or representative genomes in RefSeq (over 15,000). The user can search for any species and access two sets of tables. One set lists, for each codon, the frequency, the Relative Synonymous Codon Usage, and whether the codon is preferred.

View Article and Find Full Text PDF

Background: Myalgic encephalomyelitis (ME) is a complex and debilitating disease that often initially presents with flu-like symptoms, accompanied by incapacitating fatigue. Currently, there are no objective biomarkers or laboratory tests that can be used to unequivocally diagnosis ME; therefore, a diagnosis is made when a patient meets series of a costly and subjective inclusion and exclusion criteria. The purpose of the present study was to evaluate the utility of four clinical parameters in diagnosing ME.

View Article and Find Full Text PDF

Background/objectives: Obesity is an important risk factor for the development of diseases such as diabetes mellitus, hypertension, and dyslipidemia; however, a small number of individuals with long-standing obesity do not present with these cardiometabolic diseases. Such individuals are referred to as metabolically healthy obese (MHO) and potentially represent a subgroup of the general population with a protective genetic predisposition to obesity-related diseases. We hypothesized that individuals who were metabolically healthy, but significantly obese (BMI ≥ 35 kg/m) would represent a highly homogenous subgroup, with which to investigate potential genetic associations to obesity.

View Article and Find Full Text PDF

The gut-brain axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases.

View Article and Find Full Text PDF

Myalgic encephalomyelitis (ME) is a complex, heterogeneous illness of unknown etiology. The search for biomarkers that can delineate cases from controls is one of the most active areas of ME research; however, little progress has been made in achieving this goal. In contrast to identifying biomarkers that are directly involved in the pathological process, an immunosignature identifies antibodies raised to proteins expressed during, and potentially involved in, the pathological process.

View Article and Find Full Text PDF

Modulators using atomic systems are often limited in speed by the rate of spontaneous emission. One approach for overcoming this limit is to make use of a buffer gas such as Ethane, which causes rapid fine structure mixing of the P(1/2) and P(3/2) states, and broadens the absorption spectra of the D1 and D2 lines in alkali atoms. Employing this effect, we show that one can achieve high speed modulation using ladder transitions in Rubidium.

View Article and Find Full Text PDF

We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam.

View Article and Find Full Text PDF

We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam.

View Article and Find Full Text PDF

We demonstrate a high-efficiency optical modulator at ~1323 nm using the quantum Zeno effect in a ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam while the upper leg of the transitions represents the signal beam. The cross-modulation of the signal beam transmission is observed as the control beam is intensity modulated, and is explained in terms of the quantum Zeno effect.

View Article and Find Full Text PDF

We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam.

View Article and Find Full Text PDF