Publications by authors named "Kimheak Sao"

Recent studies have highlighted the importance of mitochondria in NP cells and articular chondrocyte health. Since the understanding of mechanisms governing mitochondrial dynamics in these tissues is lacking, we investigated the role of OPA1, a mitochondrial fusion protein, in their homeostasis. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate.

View Article and Find Full Text PDF

Alterations in physiological loading of the spine are deleterious to intervertebral disc health. The caudal spine region Ca3-6 that experiences increased flexion, showed disc degeneration in young adult mice. Given the role of Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan in disc matrix catabolism and mechanosensing, we investigated if deletion could mitigate this loading-dependent phenotype.

View Article and Find Full Text PDF

Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age.

View Article and Find Full Text PDF

Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling during tissue development, regeneration, and degeneration processes. Large extracellular proteoglycans such as aggrecan, versican, and perlecan are especially important for the structural integrity of the intervertebral disc and cartilage during development. In these tissues, proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechanical loads.

View Article and Find Full Text PDF

NP cells of the intervertebral disc and articular chondrocytes reside in avascular and hypoxic tissue niches. As a consequence of these environmental constraints the cells are primarily glycolytic in nature and were long thought to have a minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues.

View Article and Find Full Text PDF

Unlabelled: Due to their glycolytic nature and limited vascularity, nucleus pulposus (NP) cells of the intervertebral disc and articular chondrocytes were long thought to have minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in aging mice.

View Article and Find Full Text PDF

Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored.

View Article and Find Full Text PDF

Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism.

View Article and Find Full Text PDF

Aberrant extracellular matrix (ECM) assembly surrounding implanted biomaterials is the hallmark of the foreign body response, in which implants become encapsulated in thick fibrous tissue that prevents their proper function. While macrophages are known regulators of fibroblast behavior, how their phenotype influences ECM assembly and the progression of the foreign body response is poorly understood. In this study, we used in vitro models with physiologically relevant macrophage phenotypes, as well as controlled release of macrophage-modulating cytokines from gelatin hydrogels implanted subcutaneously in vivo to investigate the role of macrophages in ECM assembly.

View Article and Find Full Text PDF

Extracellular matrix and osmolarity influence the development and homeostasis of skeletal tissues through Rho GTPase-mediated alteration of the actin cytoskeleton. This study investigated whether the actin-branching Arp2/3 complex, a downstream effector of the Rho GTPases Cdc42 and Rac1, plays a critical role in maintaining the health of matrix-rich and osmotically loaded intervertebral discs and cartilage. Mice with constitutive intervertebral disc- and cartilage-specific deletion of the critical Arp2/3 subunit Arpc2 (Col2-Cre; Arpc2fl/fl) developed chondrodysplasia and spinal defects.

View Article and Find Full Text PDF

Two-dimensional (2D) substrate rigidity promotes myosin II activity to increase traction force in a process negatively regulated by tropomyosin (Tpm) 2.1. We recently discovered that actomyosin contractility can increase intracellular pressure and switch tumor cells from low-pressure lamellipodia to high-pressure lobopodial protrusions during three-dimensional (3D) migration.

View Article and Find Full Text PDF

Intracellular pressure, generated by actomyosin contractility and the directional flow of water across the plasma membrane, can rapidly reprogram cell shape and behavior. Recent work demonstrates that cells can generate intracellular pressure with a range spanning at least two orders of magnitude; significantly, pressure is implicated as an important regulator of cell dynamics, such as cell division and migration. Changes to intracellular pressure can dictate the mechanisms by which single human cells move through three-dimensional environments.

View Article and Find Full Text PDF