Publications by authors named "Kevin D Donohue"

Unlabelled: Sleep is a fundamental, conserved behavior important for survival. In many species, sleep behavior is controlled by poorly understood interactions between a system of circadian rhythms (CR), which promote sleep at ecologically appropriate times, and a homeostatic sleep drive that accumulates with time awake. The CR is a cellular phenomenon, driven by molecular oscillations of "clock genes" in nearly all cells.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.

View Article and Find Full Text PDF

A significant effort in biomedical sciences has been made to examine relationships between sex and the mechanisms underlying various disease states and behaviors, including sleep. Here, we investigated biological sex differences in sleep using male and female C57BL/6J mice (n = 267). Physiological parameters were recorded for 48-h using non-invasive piezoelectric cages to determine total sleep, non-rapid eye movement (NREM) sleep, rapid eye movement (REM)-like sleep, and wakefulness (WAKE).

View Article and Find Full Text PDF

Objective: To describe the process whereby the screening of racing Thoroughbreds with accelerometer-based inertial measurement unit (IMU) sensors followed by clinical evaluation and advanced imaging identified potentially catastrophic musculoskeletal injuries in 3 horses.

Animals: 3 Thoroughbred racehorses.

Clinical Presentation: All cases demonstrated an abnormal stride pattern either during racing (cases 1 and 2) or while breezing (case 3) and were identified as being at very high risk of catastrophic musculoskeletal injury by an algorithm derived from IMU sensor files from > 20,000 horses' race starts.

View Article and Find Full Text PDF

Objective: Wearable technologies for functional brain monitoring in freely behaving subjects can advance our understanding of cognitive processing and adaptive behavior. Existing technologies are lacking in this capability or need procedures that are invasive and/or otherwise impede brain assessments during social behavioral conditions, exercise, and sleep.

Methods: In response a complete system was developed to combine relative cerebral blood flow (rCBF) measurement, O and CO supplies, and behavior recording for use on conscious, freely behaving mice.

View Article and Find Full Text PDF

Codling moth (CM) ( L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product.

View Article and Find Full Text PDF

In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers' expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects' attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization.

View Article and Find Full Text PDF

The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice () enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes.

View Article and Find Full Text PDF

The objective was to determine the effects of sleep or lying deprivation on the behavior of dairy cows. Data were collected from 8 multi- and 4 primiparous cows (DIM = 199 ± 44 (mean ± SD); days pregnant = 77 ± 30). Using a crossover design, each cow experienced: 1) sleep deprivation implemented by noise or physical contact when their posture suggested sleep, and 2) lying deprivation imposed by a grid placed on the pen floor.

View Article and Find Full Text PDF

Many methods for sleep restriction in rodents have emerged, but most are intrusive, lack fine control, and induce stress. Therefore, a versatile, non-intrusive means of sleep restriction that can alter sleep in a controlled manner could be of great value in sleep research. In previous work, we proposed a novel system for closed-loop somatosensory stimulation based on mechanical vibration and applied it to the task of restricting Rapid Eye Movement (REM) sleep in mice [1].

View Article and Find Full Text PDF

The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5-11 years) and 20 age and gender matched typically developing children (5-11 years) during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video.

View Article and Find Full Text PDF

Background: Changes in autonomic control cause regular breathing during NREM sleep to fluctuate during REM. Piezoelectric cage-floor sensors have been used to successfully discriminate sleep and wake states in mice based on signal features related to respiration and other movements. This study presents a classifier for noninvasively classifying REM and NREM using a piezoelectric sensor.

View Article and Find Full Text PDF

Purpose: This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood.

Method: Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement.

View Article and Find Full Text PDF

Experimental manipulation of sleep in rodents is an important tool for analyzing the mechanisms of sleep and related disorders in humans. Sleep restriction systems have relied in the past on manual sensory stimulation and recently on more sophisticated automated means of delivering the same. The ability to monitor and track behavior through the electroencephalogram (EEG) and other modalities provides the opportunity to implement more selective sleep restriction that is targeted at particular stages of sleep with flexible control over their amount, duration, and timing.

View Article and Find Full Text PDF

Study Objectives: Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings.

View Article and Find Full Text PDF

Objective: Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep.

Methods: Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively.

View Article and Find Full Text PDF

Complex relationships between array gain patterns and microphone distributions limit the application of optimization algorithms on irregular arrays. This paper proposes a Genetic Algorithm (GA) for microphone array optimization in immersive (near-field) environments. Geometric descriptors for irregular arrays are proposed for use as objective functions to reduce optimization time by circumventing the need for direct array gain computations.

View Article and Find Full Text PDF

Objective: The aim of the study was to present the development of a miniature structured light laser projection endoscope and to quantify vocal fold length and vibratory features related to impact stress of the pediatric glottis using high-speed imaging.

Study Design: The custom-developed laser projection system consists of a green laser with a 4-mm diameter optics module at the tip of the endoscope, projecting 20 vertical laser lines on the glottis. Measurements of absolute phonatory vocal fold length, membranous vocal fold length, peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity were obtained in five children (6-9 years), two adult male and three adult female participants without voice disorders, and one child (10 years) with bilateral vocal fold nodules during modal phonation.

View Article and Find Full Text PDF

We recently reported that the neuropathic pain medication, gabapentin (GBP; Neurontin), significantly attenuated both noxious colorectal distension (CRD)-induced autonomic dysreflexia (AD) and tail pinch-induced spasticity compared to saline-treated cohorts 2-3 weeks after complete high thoracic (T4) spinal cord injury (SCI). Here we employed long-term blood pressure telemetry to test, firstly, the efficacy of daily versus acute GBP treatment in modulating AD and tail spasticity in response to noxious stimuli at 2 and 3 weeks post-injury. Secondly, we determined whether daily GBP alters baseline cardiovascular parameters, as well as spontaneous AD events detected using a novel algorithm based on blood pressure telemetry data.

View Article and Find Full Text PDF

Objective: To clinically evaluate changes in vocal fold vibration and voice production caused by voice therapy in hoarseness resulting from contact granuloma.

Design: Single-subject before-after prospective study using multiple measures of vocal function. A 6-week program of vocal function exercises (VFEs) was conducted using multiple assessments of vocal function to identify and measure the changes pre- and posttreatment, in a 51-year-old male with unilateral contact granuloma.

View Article and Find Full Text PDF

Profound disruptions of circadian rhythms and sleep/wake cycles constitute a major cause of institutionalization of AD patients. This study investigated whether a rodent model of AD, APP(NLH/NLH)/PS-1(P264L/264L) (APPxPS1) mice, exhibits circadian alterations. The APPxPS1 mice were generated using CD-1/129 mice and Cre-lox knock-in technology to "humanize" the mouse amyloid (A)β sequence and create a presenilin-1 mutation identified in familial early-onset AD patients.

View Article and Find Full Text PDF

Objective: The aim of the study is to characterize normal vibratory patterns of both glottal closure and phase closure in the pediatric population with the use of high speed digital imaging.

Methods: For this prospective study a total of 56 pre-pubertal children, 5-11 years (boys=28, girls=28) and 56 adults, 21-45 years (males=28, females=28) without known voice problems were examined with the use of a new technology of high speed digital imaging. Recordings were captured at 4000 frames per second for duration of 4.

View Article and Find Full Text PDF

Objectives/hypothesis: The aim of the study was to present the development of a miniature laser projection endoscope and to quantify vocal fold length and vibratory amplitude of the pediatric glottis using high-speed digital imaging coupled with the laser endoscope.

Study Design: For this prospective study, absolute measurement of entire vocal fold length, membranous length of the vocal fold, and vibratory amplitude during phonation were obtained in one child (9 years old), one adult male (36 years old), and one adult female (20 years old) with the use of high-speed digital imaging, coupled with a custom-developed laser projection endoscope.

Methods: The laser projection system consists of a module slip-fit sleeve with two 3-mW 650-nm laser diodes in horizontal orientation separated by a distance of 5 mm.

View Article and Find Full Text PDF

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity.

View Article and Find Full Text PDF