Publications by authors named "Kerstin Huebner"

Background/aim: The present study aimed to compare the tissue responses to biomaterials in the chick chorioallantoic membrane (CAM) model with those from the subcutaneous implantation model in rats at an early time point. It was especially investigated whether histopathological scoring according to DIN EN ISO 10993-6 is also possible after biomaterial implantation using the CAM model and to what extent the values differ from the data obtained from small animal experiments.

Materials And Methods: Implantation of a xenogeneic bone substitute using the CAM model for 24 h and subcutaneous implantation model in rats up to 10 days post implantation were conducted.

View Article and Find Full Text PDF

Changes in cellular physiology and proteomic homeostasis accompanied the initiation and progression of colorectal cancer. Thus, ubiquitination represents a central regulatory mechanism in proteome dynamics. However, the complexity of the ubiquitinating network involved in carcinogenesis remains unclear.

View Article and Find Full Text PDF

Intestinal organoids reflect the 3D structure and function of their original tissues. Organoid are typically cultured in Matrigel, an extracellular matrix (ECM) mimicking the basement membrane, which is suitable for epithelial cells but does not accurately mimic the tumour microenvironment of colorectal cancer (CRC). The ECM and particularly collagen type I is crucial for CRC progression and invasiveness.

View Article and Find Full Text PDF
Article Synopsis
  • * These nutrient-starved cancer cells showed increased amounts and sizes of lysosomes, which were primarily located near the nucleus, due to a boost in the protein Rab7a responsible for lysosomal trafficking.
  • * The acidic environment of lysosomes in these cells can trap certain drugs like doxorubicin, contributing to drug resistance, but this resistance can be mitigated by using a lysosomal inhibitor, bafilomycin A1, which, along with 5-Fluorouracil, significantly reduced microtumor volume in tests.
View Article and Find Full Text PDF

Partial epithelial-mesenchymal transition (p-EMT) has recently been identified as a hybrid state consisting of cells with both epithelial and mesenchymal characteristics and is associated with the migration, metastasis, and chemoresistance of cancer cells. Here, we describe the induction of p-EMT in starved colorectal cancer (CRC) cells and identify a p-EMT gene signature that can predict prognosis. Functional characterisation of starvation-induced p-EMT in HCT116, DLD1, and HT29 cells showed changes in proliferation, morphology, and drug sensitivity, supported by in vivo studies using the chorioallantoic membrane model.

View Article and Find Full Text PDF

Background: The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect.

View Article and Find Full Text PDF

In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) is associated with tumor aggressiveness and increased invasion, migration, metastasis, angiogenesis, and drug resistance. Although the HCT116 p21-/- cell line is well known for its EMT-associated phenotype, with high Vimentin and low E-cadherin protein levels, the gene signature of this rather intermediate EMT-like cell line has not been determined so far. In this work, we present a robust molecular and bioinformatics analysis, to reveal the associated gene expression profile and its correlation with different types of colorectal cancer tumors.

View Article and Find Full Text PDF

Human hepatocellular carcinoma (HCC) is among the most lethal and common cancers in the human population, and new molecular targets for therapeutic intervention are urgently needed. Deleted in liver cancer 1 (DLC1) was originally identified as a tumor suppressor gene in human HCC. DLC1 is a Rho-GTPase-activating protein (RhoGAP) which accelerates the return of RhoGTPases to an inactive state.

View Article and Find Full Text PDF

In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) residing in colorectal cancer tissues have tumorigenic capacity and contribute to chemotherapeutic resistance and disease relapse. It is well known that the survival of colorectal CSCs after 5-fluorouracil (5-FU)-based therapy leads to cancer recurrence. Thus CSCs represent a promising drug target.

View Article and Find Full Text PDF

Liposarcoma is one of the most common soft tissue sarcomas in adults. Recognized histological subtypes include well differentiated/dedifferentiated liposarcoma (WD/DDLS), myxoid liposarcoma (MLS) and pleomorphic liposarcoma. Currently, there are no proper subtype-specific treatments due to the genetic, histological and clinical heterogeneity of the liposarcoma subentities.

View Article and Find Full Text PDF