Skin cancer is one of the cancers that registers the highest number of new cases annually. Among all forms of skin cancer, melanoma is the most invasive and deadliest. The resistance of this form of cancer to conventional treatments has led to the employment of alternative/complementary therapeutic approaches.
View Article and Find Full Text PDFAn efficient synthetic access to new cationic porphyrin-bipyridine iridium(III) bis-cyclometalated complexes was developed. These porphyrins bearing arylbipyridine moieties at β-pyrrolic positions coordinated with iridium(III), and the corresponding Zn(II) porphyrin complexes were spectroscopically, electrochemically, and electronically characterized. The features displayed by the new cyclometalated porphyrin-bipyridine iridium(III) complexes, namely photoinduced electron transfer process (PET), and a remarkable efficiency to generate O, allowing us to envisage new challenges and opportunities for their applications in several fields, such as photo(catalysis) and photodynamic therapies.
View Article and Find Full Text PDFJ Photochem Photobiol B
June 2022
The emergence of opportunistic pathogens and the selection of resistant strains have created a grim scenario for conventional antimicrobials. Consequently, there is an ongoing search for alternative techniques to control these microorganisms. One such technique is antimicrobial photodynamic therapy (aPDT), which combines photosensitizers, light, and molecular oxygen to produce reactive oxygen species and kill the target pathogen.
View Article and Find Full Text PDFPhthalocyanine (Pc) dyes are photoactive molecules that can absorb and emit light in the visible spectrum, especially in the red region of the spectrum, with great potential for biological scopes. For this target, it is important to guarantee a high Pc solubility, and the use of suitable pyridinium units on their structure can be a good strategy to use effective photosensitizers (PSs) for photodynamic therapy (PDT) against cancer cells. Zn(II) phthalocyanines (ZnPcs) conjugated with thiopyridinium units (1-3) were evaluated as PS drugs against B16F10 melanoma cells, and their photophysical, photochemical, and photobiological properties were determined.
View Article and Find Full Text PDFMelanoma is the most dangerous form of skin cancer, with an abrupt growth of its incidence over the last years. It is extremely resistant to traditional treatments such as chemotherapy and radiotherapy, but therapies for this cancer are gaining attention. Photodynamic therapy (PDT) is considered an effective modality to treat several types of skin cancers and can offer the possibility to treat one of the most aggressive ones: melanoma.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2021
Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (O). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a promising alternative to overcome the resistance of melanoma to conventional therapies. Currently applied photosensitizers (PS) are often based on tetrapyrrolic macrocycles like porphyrins. Unfortunately, in some cases the use of this type of derivative is limited due to their poor solubility in the biological environment.
View Article and Find Full Text PDFPhotochem Photobiol Sci
July 2020
In this study, we report for the first time the use of four aza-dipyrromethenes (ADPMs) as photosensitizers for cancer PDT. The synthesis and characterization of the ADPMs and their photodynamic action against B16F10 melanoma cells were assessed. ADPM 2 is the best singlet oxygen generator and the most phototoxic (at 2.
View Article and Find Full Text PDFPhotodynamic inactivation of bacterial and fungal pathogens is a promising alternative to the extensive use of conventional single-target antibiotics and antifungal agents. The combination of photosensitizers and adjuvants can improve the photodynamic inactivation efficiency. In this regard, it has been shown that the use of potassium iodide (KI) as adjuvant increases pathogen killing.
View Article and Find Full Text PDFThe post-functionalization of 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide, known as a highly efficient photosensitizer (PS) for antimicrobial photodynamic therapy (aPDT), in the presence of 3- or 4-mercaptobenzoic acid, afforded two new tricationic porphyrins with adequate carboxylic pending groups to be immobilized on chitosan or titanium oxide. The structural characterization of the newly obtained materials confirmed the success of the porphyrin immobilization on the solid supports. The photophysical properties and the antimicrobial photodynamic efficacy of the non-immobilized porphyrins and of the new conjugates were evaluated.
View Article and Find Full Text PDFThe development of selective, efficient, and recoverable/reusable catalysts for oxidation reactions has become one of the main challenges of modern chemistry. Considering our interest in efficient catalytic systems based on porphyrin (Por) and phthalocyanine (Pc) coordination polymers, we report here the synthesis, characterization and catalytic activity of a new Pc coordination polymer (coined hereafter as Cu4CuPcSPy). The new Pc material was obtained in excellent yield, from the reaction of H2PcSPy with an excess amount of copper(ii) acetate.
View Article and Find Full Text PDFThis work employed [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin] ([H2(TPPF20)], H2P1) as the platform to prepare a tetrasubstituted galactodendritic conjugate porphyrin (H2P3). After metalation with excess copper(II) acetate, H2P3 afforded a new solid porphyrin material, Cu4CuP3S. This work also assessed the ability of the copper(II) complex (CuP3) of H2P3 to coordinate with zinc(II) acetate, to yield the new material Zn4CuP3S.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2015
Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2009
The preparation, characterization, and application in oxidation reactions of new biomimetic catalysts are reported. Brazilian Sao Simao kaolinite clay has been functionalized with [meso-tetrakis(pentafluorophenyl)porphinato]iron(III), Fe(TPFPP). To obtain the functionalized clay, the natural clay was purified by dispersion-sedimentation, expanded by insertion of dimethyl sulfoxide (DMSO), and functionalized with amino groups by substitution of DMSO with ethanolamine.
View Article and Find Full Text PDF