Publications by authors named "Karin Ljung"

Aims: We aim to evaluate the implementation of the 2021 ESC Guidelines regarding screening and treatment of iron deficiency in patients with heart failure (HF) at Karolinska University Hospital.

Methods And Results: Patients with left ventricular ejection fraction (LVEF) < 50% and New York Heart Association (NYHA) class II-IV who visited Karolinska University Hospital in 2021 were identified through the registry SwedeHF. Data on patient characteristics, screening for iron deficiency, administration of ferric carboxymaltose (FCM) and HF medication were extracted from patients' health records.

View Article and Find Full Text PDF

Plants use environmental cues to orient organ and plant growth, such as the direction of gravity or the direction, quantity, and quality of light. During the germination of Arabidopsis thaliana seeds in soil, negative gravitropism responses direct hypocotyl elongation such that the seedling can reach the light for photosynthesis and autotrophic growth. Similarly, hypocotyl elongation in the soil also requires mechanisms to efficiently grow around obstacles such as soil particles.

View Article and Find Full Text PDF

Indole-3-acetic acid (IAA), the most common form of auxin, is involved in a great range of plant physiological processes. IAA is synthesized from the amino acid tryptophan and can be transported and inactivated in a myriad of ways. Despite intense research efforts, there are still dark corners in our comprehension of IAA metabolism and its interplays with other pathways.

View Article and Find Full Text PDF

The ability of parasitic plants to withdraw nutrients from their hosts depends on the formation of an infective structure known as the haustorium. How parasites regulate their haustoria numbers is poorly understood, and here, we uncovered that existing haustoria in the facultative parasitic plants and suppressed the formation of new haustoria located on distant roots. Using we found that this effect depended on the formation of mature haustoria and could be induced through the application of external nutrients.

View Article and Find Full Text PDF
Article Synopsis
  • Plants need to be able to handle stress from things like temperature changes to survive, and they use special signals and hormones to help them adjust quickly.
  • Scientists studied a key protein called PORCUPINE (PCP) to see how it affects root growth in different temperatures.
  • They found that without PCP, plants had messed up roots when temperatures changed, showing that PCP helps control important signals and hormones that keep roots healthy.
View Article and Find Full Text PDF

Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximize fitness and ensure reproductive success. We used the arctic alpine perennial to explore the role of prolonged cold exposure on adventitious rooting.

View Article and Find Full Text PDF

Background: Gaseous phytohormone ethylene levels are directly influenced by the production of its immediate non-volatile precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Owing to the strongly acidic character of the ACC molecule, its quantification has been difficult to perform. Here, we present a simple and straightforward validated method for accurate quantification of not only ACC levels, but also major members of other important phytohormonal classes - auxins, cytokinins, jasmonic acid, abscisic acid and salicylic acid from the same biological sample.

View Article and Find Full Text PDF

Seasonal dynamics of root growth play an important role in large-scale ecosystem processes; they are largely governed by growth regulatory compounds and influenced by environmental conditions. Yet, our knowledge about physiological drivers of root growth is mostly limited to laboratory-based studies on model plant species. We sampled root tips of Eriophorum vaginatum and analyzed their auxin concentrations and meristem lengths biweekly over a growing season in situ in a subarctic peatland, both in surface soil and at the permafrost thawfront.

View Article and Find Full Text PDF

Light provides seeds with information that is essential for the adjustment of their germination to the conditions that are most favorable for the successful establishment of the future seedling. The promotion of germination depends mainly on environmental factors, like temperature and light, as well as internal factors associated with the hormonal balance between gibberellins (GA) and abscisic acid (ABA), although other hormones such as auxins may act secondarily. While transcriptomic studies of light-germinating seeds suggest that auxins and auxin transporters are necessary, there are still no functional studies connecting the activity of the auxin transporters in light-induced seed germination.

View Article and Find Full Text PDF

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch ().

View Article and Find Full Text PDF

Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques.

View Article and Find Full Text PDF

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell.

View Article and Find Full Text PDF

Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots.

View Article and Find Full Text PDF

Deciduous trees exhibit a spectacular phenomenon of autumn senescence driven by the seasonality of their growth environment, yet there is no consensus which external or internal cues trigger it. Senescence starts at different times in European aspen (Populus tremula L.) genotypes grown in same location.

View Article and Find Full Text PDF

Fruit formation depends on successful fertilization and is highly sensitive to weather fluctuations that affect pollination. Auxin promotes fruit initiation and growth following fertilization. Class A auxin response factors (Class A ARFs) repress transcription in the absence of auxin and activate transcription in its presence.

View Article and Find Full Text PDF

Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis.

View Article and Find Full Text PDF

Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed.

View Article and Find Full Text PDF

In Arabidopsis thaliana, local wounding and herbivore feeding provoke leaf-to-leaf propagating Ca waves that are dependent on the activity of members of the glutamate receptor-like channels (GLRs). In systemic tissues, GLRs are needed to sustain the synthesis of jasmonic acid (JA) with the subsequent activation of JA-dependent signaling response required for the plant acclimation to the perceived stress. Even though the role of GLRs is well established, the mechanism through which they are activated remains unclear.

View Article and Find Full Text PDF

RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC).

View Article and Find Full Text PDF

To maximize reproductive success, flowering plants must correctly time entry and exit from the reproductive phase. While much is known about mechanisms that regulate initiation of flowering, end-of-flowering remains largely uncharacterized. End-of-flowering in Arabidopsis (Arabidopsis thaliana) consists of quasi-synchronous arrest of inflorescences, but it is unclear how arrest is correctly timed with respect to environmental stimuli and reproductive success.

View Article and Find Full Text PDF

ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, has two paralogs, of which seems to conserve the ancestral function.

View Article and Find Full Text PDF

Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule.

View Article and Find Full Text PDF

The 26S proteasome is a conserved multi-subunit machinery in eukaryotes. It selectively degrades ubiquitinated proteins, which in turn provides an efficient molecular mechanism to regulate numerous cellular functions and developmental processes. Here, we studied a new loss-of-function allele of RPN12a, a plant ortholog of the yeast and human structural component of the 19S proteasome RPN12.

View Article and Find Full Text PDF

The size of plant organs is highly responsive to environmental conditions. The plant's embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight.

View Article and Find Full Text PDF