Publications by authors named "Kaitlyn R Mitchell"

The complex relationship between temperature and schistosomiasis, an environmentally mediated neglected tropical disease affecting 250 million people globally, with hyperendemicity mostly in Africa, is poorly characterized. Here, we explored how seasonal temperature fluctuation affects the persistence, dynamics, and geographic distribution of schistosomiasis in Africa. We used a temperature-sensitive, mechanistic model of schistosomiasis dynamics that accounts for the adaptive behaviors of intermediate snail hosts and derived the disease's thermal response curve for different patterns of seasonal temperature fluctuations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how temperature affects schistosomiasis, a disease caused by schistosome parasites and their host snails, particularly in sub-Saharan Africa where the disease is common.
  • Previous models underestimated the effective temperature range for schistosomiasis transmission, prompting this research to analyze how temperature influences the parasites and snails involved.
  • The findings indicate that optimal transmission temperatures are higher than previously thought, suggesting that climate change may increase schistosomiasis risk in regions currently suitable for the disease.
View Article and Find Full Text PDF

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic.

View Article and Find Full Text PDF

Background: Protein expression patterns underlie physiological processes and phenotypic differences including those occurring during early development. The Pacific oyster (Crassostrea gigas) undergoes a major phenotypic change in early development from free-swimming larval form to sessile benthic dweller while proliferating in environments with broad temperature ranges. Despite the economic and ecological importance of the species, physiological processes occurring throughout metamorphosis and the impact of temperature on these processes have not yet been mapped out.

View Article and Find Full Text PDF

Purpose: Radiation and cetuximab are therapeutics used in management of head and neck squamous cell carcinoma (HNSCC). Despite clinical success with these modalities, development of both intrinsic and acquired resistance is an emerging problem in the management of this disease. The purpose of this study was to investigate signaling of the receptor tyrosine kinase AXL in resistance to radiation and cetuximab treatment.

View Article and Find Full Text PDF