The complex relationship between temperature and schistosomiasis, an environmentally mediated neglected tropical disease affecting 250 million people globally, with hyperendemicity mostly in Africa, is poorly characterized. Here, we explored how seasonal temperature fluctuation affects the persistence, dynamics, and geographic distribution of schistosomiasis in Africa. We used a temperature-sensitive, mechanistic model of schistosomiasis dynamics that accounts for the adaptive behaviors of intermediate snail hosts and derived the disease's thermal response curve for different patterns of seasonal temperature fluctuations.
View Article and Find Full Text PDFThe geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic.
View Article and Find Full Text PDFInfect Dis Model
March 2023
With the declaration of the COVID-19 pandemic by the World Health Organization on March 11, 2020, the University of Tennessee College of Veterinary Medicine (UTCVM), like other institutions, restructured their services to reduce the potential spread of the COVID-19 virus while simultaneously providing critical and essential veterinary services. A mathematical model was developed to predict the change in the level of possible COVID-19 infections due to the increased number of potential contacts within the UTCVM hospital. A system of ordinary differential equations with different compartments for UTCVM individuals and the Knox county population was formulated to show the dynamics of transmission and the number of confirmed cases.
View Article and Find Full Text PDF