Publications by authors named "Jurgen E Schneider"

Background: Cardiac diffusion tensor imaging (cDTI) is sensitive to imaging parameters including the number of unique diffusion encoding directions (ND) and number of repetitions (NR; analogous to number of signal averages or NSA). However, there is no clear guidance for optimising these parameters in the clinical setting.

Methods: Spin echo cDTI data with 2 order motion compensated diffusion encoding gradients were acquired in ten healthy volunteers on a 3T MRI scanner with different diffusion encoding schemes in pseudo-randomised order.

View Article and Find Full Text PDF

Background: Cardiac diffusion tensor imaging (cDTI) is an emerging technique for microstructural characterization of the heart and has shown clinical potential in a range of cardiomyopathies. However, there is substantial variation reported for in vivo cDTI results across the literature, and sensitivity of cDTI to differences in imaging sites, scanners, acquisition protocols and post-processing methods remains incompletely understood.

Methods: SIGNET is a prospective multi-centre, observational study in travelling and non-travelling healthy volunteers.

View Article and Find Full Text PDF

Purpose: Cardiac diffusion tensor imaging (cDTI) can investigate the microstructure of heart tissue. At sufficiently high b-values, additional information on microstructure can be observed, but the data require a representation such as diffusion kurtosis imaging (DKI). cDTI is prone to image corruption, which is usually treated with shot rejection but which can be handled more generally with robust estimation.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a common, serious, genetic heart muscle disorder. Although the biophysical mechanisms by which gene variants in sarcomeric proteins disrupt cardiomyocyte function are largely understood, the cellular and molecular pathways leading to the complex, variable, and adverse remodeling of the non-myocyte compartment are unexplained. Here, we report that postmortem and explanted human HCM hearts exhibited chronic focal leukocyte infiltration and prominent activation of immune cells.

View Article and Find Full Text PDF

Purpose: Diffusion tensor imaging (DTI) is commonly used in cardiac diffusion magnetic resonance imaging (dMRI). However, the tissue's microstructure (cells, membranes, etc.) restricts the movement of the water molecules, making the spin displacements deviate from Gaussian behavior.

View Article and Find Full Text PDF

Cardiac diffusion tensor imaging (cDTI) is highly prone to image corruption, yet robust-fitting methods are rarely used. Single voxel outlier detection (SVOD) can overlook corruptions that are visually obvious, perhaps causing reluctance to replace whole-image shot-rejection (SR) despite its own deficiencies. SVOD's deficiencies may be relatively unimportant: corrupted signals that are not statistical outliers may not be detrimental.

View Article and Find Full Text PDF
Article Synopsis
  • Quantum dots (QDs) are small semiconductor particles that could improve biomedical imaging and drug delivery, with Indium phosphide QDs covered by zinc sulphide being a more biocompatible option.
  • This study reveals that PEGylating these QDs significantly reduces platelet activation and aggregation, which is important to prevent excessive blood clotting.
  • By decreasing the interaction between QDs and platelets, PEGylation enhances the safety and effectiveness of QDs for use in medical applications.
View Article and Find Full Text PDF

Thanks to recent developments in cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the tridimensional microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intracellular, extracellular, and intravascular spaces.

View Article and Find Full Text PDF

This study aimed to examine different trajectory correction methods for spiral imaging on a preclinical scanner with high-performance gradients with respect to image quality in a phantom and in vivo. The gold standard method of measuring the trajectories in a separate experiment is compared to an isotropic delay-correction, a correction using the gradient system transfer function (GSTF), and a combination of the two. Three different spiral trajectories, with 96, 16, and three interleaves, are considered.

View Article and Find Full Text PDF

Purpose: This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure.

Methods: Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation ( and ) and , and 1000 (twice the commonly used on clinical scanners).

View Article and Find Full Text PDF

InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents.

View Article and Find Full Text PDF

Diffusion MR is sensitive to the microstructural features of a sample. Fine-scale characteristics can be probed by employing strong diffusion gradients while the low -value regime is determined by the cumulants of the distribution of particle displacements. A signal representation based on the cumulants, however, suffers from a finite convergence radius and cannot represent the 'localization regime' characterized by a stretched exponential decay that emerges at large gradient strengths.

View Article and Find Full Text PDF

Background: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate.

View Article and Find Full Text PDF

Purpose: This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts.

Methods: DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the use of tensor-valued diffusion encoding to gain deeper insights into the microstructure of heart tissue compared to typical diffusion-weighted imaging techniques.
  • Researchers scanned ten healthy individuals using a 3T MRI and performed advanced data analysis to obtain metrics like mean diffusivity, fractional anisotropy, and more, assessing their repeatability and normal values.
  • The results indicate that the method is viable and could introduce new biomarkers for characterizing heart tissue, showcasing the first successful application of this technique in living humans.
View Article and Find Full Text PDF

Background: Phosphorus cardiovascular magnetic resonance spectroscopy (P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity.

View Article and Find Full Text PDF

Background: Adverse LV remodeling post-ST-segment elevation myocardial infarction (STEMI) is associated with a poor prognosis, but the underlying mechanisms are not fully understood. Diffusion tensor (DT)-cardiac magnetic resonance (CMR) allows in vivo characterization of myocardial architecture and provides unique mechanistic insight into pathophysiologic changes following myocardial infarction.

Objectives: This study evaluated the potential associations between DT-CMR performed soon after STEMI and long-term adverse left ventricular (LV) remodeling following STEMI.

View Article and Find Full Text PDF

Aims: Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure.

View Article and Find Full Text PDF

In silico tissue models (viz. numerical phantoms) provide a mechanism for evaluating quantitative models of magnetic resonance imaging. This includes the validation and sensitivity analysis of imaging biomarkers and tissue microstructure parameters.

View Article and Find Full Text PDF

Anti-1-amino-3-fluorine-fluorocyclobutane-1-carboxylic acid (F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between F-fluciclovine uptake, MRI findings, and tumour biology. F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the potential for cardiac diffusion tensor imaging (cDTI) to detect intramyocardial hemorrhage (IMH) after ST-elevation myocardial infarction (STEMI), which is important for patient prognosis.
  • - A total of 50 patients were examined at one week and three months post-STEMI, using various imaging techniques including T2* mapping, which is the standard for identifying IMH.
  • - Results showed that cDTI effectively identified IMH, with the presence of hypointense signals matching IMH areas found on T2* maps, and significant differences in mean diffusivity and fractional anisotropy values, indicating altered myocardial architecture due to IMH.
View Article and Find Full Text PDF