Ureaplasma is one of the smallest pathogenic bacteria, generating approximately 95% of its adenosine triphosphate (ATP) solely through urease. Studies on Ureaplasma parvum, a species of Ureaplasma, have confirmed that adding urease inhibitors inhibits bacterial growth. The K and V of the urease-mediated reaction were estimated to be 4.
View Article and Find Full Text PDFBiparatopic antibodies (BpAbs) bind two different antigen epitopes to form characteristic immunocomplexes. Many BpAbs have been developed for enhanced cross-linking to induce signal transduction or cell internalization, whereas few were reported with smaller immunocomplexes to suppress unwanted signaling. Here, we developed a strategy to induce 1:1 immunocomplex formation to maximize antagonistic function.
View Article and Find Full Text PDFCell division in most bacteria is regulated by the tubulin homolog FtsZ as well as ZapA, a FtsZ-associated protein. However, how FtsZ and ZapA function coordinately has remained elusive. Here we report the cryo-electron microscopy structure of the ZapA-FtsZ complex at 2.
View Article and Find Full Text PDFSci Adv
February 2025
Rotary ATPases, including FF-, VV-, and AA-ATPases, are molecular motors that exhibit rotational movements for energy conversion. In the gliding bacterium, , a dimeric F-like ATPase forms a chain structure within the cell, which is proposed to drive the gliding motility. However, the mechanisms of force generation and transmission remain unclear.
View Article and Find Full Text PDFConventional bivalent antibodies against cell surface receptors often initiate unwanted signal transduction by crosslinking two antigen molecules. Biparatopic antibodies (BpAbs) bind to two different epitopes on the same antigen, thus altering crosslinking ability. In this study, we develop BpAbs against tumor necrosis factor receptor 2 (TNFR2), which is an attractive immune checkpoint target.
View Article and Find Full Text PDFFtsZ polymerizes into protofilaments to form the Z-ring that acts as a scaffold for accessory proteins during cell division. Structures of FtsZ have been previously solved, but detailed mechanistic insights are lacking. Here, we determine the cryoEM structure of a single protofilament of FtsZ from Klebsiella pneumoniae (KpFtsZ) in a polymerization-preferred conformation.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) is a multidrug-resistant (MDR) bacterial pathogen of acute clinical significance. Resistance to current standard-of-care antibiotics, such as vancomycin and linezolid, among nosocomial and community-acquired MRSA clinical isolates is on the rise. This threat to global public health highlights the need to develop new antibiotics for the treatment of MRSA infections.
View Article and Find Full Text PDFFunctionalization of graphene is one of the most important fundamental technologies in a wide variety of fields including industry and biochemistry. We have successfully achieved a novel oxidative modification of graphene using photoactivated ClO as a mild oxidant and confirmed the oxidized graphene grid is storable with its functionality for at least three months under N atmosphere. Subsequent chemical functionalization enabled us to develop an epoxidized graphene grid (EG-grid™), which effectively adsorbs protein particles for electron cryomicroscopy (cryoEM) image analysis.
View Article and Find Full Text PDFWe are amid the historic coronavirus infectious disease 2019 (COVID-19) pandemic. Imbalances in the accessibility of vaccines, medicines, and diagnostics among countries, regions, and populations, and those in war crises, have been problematic. Nanobodies are small, stable, customizable, and inexpensive to produce.
View Article and Find Full Text PDFInt J Mol Sci
February 2021
FtsZ is a key protein in bacterial cell division and is assembled into filamentous architectures. FtsZ filaments are thought to regulate bacterial cell division and have been investigated using many types of imaging techniques such as atomic force microscopy (AFM), but the time scale of the method was too long to trace the filament formation process. Development of high-speed AFM enables us to achieve sub-second time resolution and visualize the formation and dissociation process of FtsZ filaments.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2020
FtsZ, a tubulin-like GTPase, is essential for bacterial cell division. In the presence of GTP, FtsZ polymerizes into filamentous structures, which are key to generating force in cell division. However, the structural basis for the molecular mechanism underlying FtsZ function remains to be elucidated.
View Article and Find Full Text PDFAddressing the growing problem of antibiotic resistance requires the development of new drugs with novel antibacterial targets. FtsZ has been identified as an appealing new target for antibacterial agents. Here, we describe the structure-guided design of a new fluorescent probe (BOFP) in which a BODIPY fluorophore has been conjugated to an oxazole-benzamide FtsZ inhibitor.
View Article and Find Full Text PDFBranched-chain polyamine synthase (BpsA) catalyzes sequential aminopropyl transfer from the donor, decarboxylated S-adenosylmethionine (dcSAM), to the acceptor, linear-chain polyamine, resulting in the production of a quaternary-branched polyamine via tertiary branched polyamine intermediates. Here, we analyzed the catalytic properties and X-ray crystal structure of Tth-BpsA from Thermus thermophilus and compared them with those of Tk-BpsA from Thermococcus kodakarensis, which revealed differences in acceptor substrate specificity and C-terminal structure between these two enzymes. To investigate the role of the C-terminal flexible region in acceptor recognition, a region (QDEEATTY) in Tth-BpsA was replaced with that in Tk-BpsA (YDDEESSTT) to create chimeric Tth-BpsA C9, which showed a severe reduction in catalytic efficiency toward N -aminopropylnorspermidine, but not toward N -aminopropylspermidine, mimicking Tk-BpsA substrate specificity.
View Article and Find Full Text PDFUnlabelled: Branched-chain polyamines are found exclusively in thermophilic bacteria and Euryarchaeota and play essential roles in survival at high temperatures. In the present study, kinetic analyses of a branched-chain polyamine synthase from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-BpsA) were conducted, showing that N -bis(aminopropyl)spermidine was produced by sequential additions of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine, through bifunctional catalytic action. Tk-BpsA catalyzed the aminopropylation of the linear-chain polyamines spermidine, spermine, norspermidine, and the tertiary-branched polyamines N -aminopropylspermidine and N -aminopropylnorspermidine, but not of short-chain diamines, putrescine, and cadaverine, suggesting that Tk-BpsA does not catalyze the aminopropylation of primary amino groups of diamines.
View Article and Find Full Text PDFIn the effort to combat antibiotic resistance, inhibitors of the essential bacterial protein FtsZ have emerged as a promising new class of compounds with clinical potential. One such FtsZ inhibitor (TXA707) is associated with potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) that are resistant to current standard-of-care antibiotics. However, mutations in S.
View Article and Find Full Text PDFThe tubulin-homolog protein FtsZ is essential for bacterial cell division. FtsZ polymerizes to form protofilaments that assemble into a contractile ring-shaped structure in the presence of GTP. Recent studies showed that FtsZ treadmilling coupled with the GTPase activity drives cell wall synthesis and bacterial cell division.
View Article and Find Full Text PDFThe bacterial cell-division protein FtsA anchors FtsZ to the cytoplasmic membrane. But how FtsA and FtsZ interact during membrane division remains obscure. We have solved 2.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
August 2013
FtsA from methicillin-resistant Staphylococcus aureus (MRSA) was cloned, overexpressed and purified. The protein was crystallized using the sitting-drop vapour-diffusion technique. A cocrystal with β-γ-imidoadenosine 5'-phosphate (AMPPNP; a nonhydrolysable ATP analogue) was grown using PEG 3350 as a precipitant at 293 K.
View Article and Find Full Text PDF