In this study, some confusing points about electron film dosimetry using white polystyrene suggested by international protocols were verified using a clinical linear accelerator (LINAC). According to international protocol recommendations, ionometric measurements and film dosimetry were performed on an SP34 slab phantom at various electron energies. Scaling factor analysis using ionometric measurements yielded a depth scaling factor of 0.
View Article and Find Full Text PDFBackground: The machine-specific reference (msr) correction factors ( ) were introduced in International Atomic Energy Agency (IAEA) Technical Report Series 483 (TRS-483) for reference dosimetry of small fields. Several correction factor sets exist for a Leksell Gamma Knife (GK) Perfexion or Icon. Nevertheless, experiments have not rigorously validated the correction factors from different studies.
View Article and Find Full Text PDFRev Sci Instrum
February 2020
Accelerator Based Neutron Sources (ABNS) have been studied for their utility in materials research as well as for boron neutron captured therapy. By making significant efforts to study the (p,n) and (d,n) nuclear reactions, the specifications of the accelerator system have been determined. In this paper, we compare the design results for two types of radio frequency quadrupole (RFQ) accelerators to provide proton and deuteron beams, respectively.
View Article and Find Full Text PDFRadioactive ion beams produced using the isotope separation on-line method in the Rare isotope Accelerator complex for ON-line (RAON) experiment are to be delivered with a beam emittance of around 3 π mm mrad, an energy spread of less than 10 eV, and a short beam bunch width of around 10 µs to meet the requirements of an electron beam ion source charge breeder. A radio frequency quadrupole cooler buncher (RFQ-CB) will be used to meet the beam quality requirements mentioned above. Our target bunching capacity of RFQ-CB is 10 ions/bunch for various ion species.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet.
View Article and Find Full Text PDFThe gas cluster ion beam (GCIB) and liquid metal ion beam have been studied in the context of ion beam usage for analytical equipment in applications such as X-ray photoelectron spectroscopy and secondary ion mass spectroscopy (SIMS). In particular, small ion sources are used for the secondary ion generation and ion etching. To set the context to this study, the SIMS project has been launched to develop ion-gun based analytical equipment for the Korea Basic Science Institute.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2).
View Article and Find Full Text PDF